-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
171 lines (156 loc) · 5.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from argparse import ArgumentParser
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow.keras.layers import (
BatchNormalization,
Conv2D,
Conv2DTranspose,
Flatten,
LeakyReLU,
ReLU,
)
from tensorflow.keras.initializers import RandomNormal
from tensorflow.keras.callbacks import TensorBoard
from net import GAN
AUTOTUNE = tf.data.experimental.AUTOTUNE
NUM_EXAMPLES_TO_GENERATE = 16
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--log-dir", default="logs")
parser.add_argument("--generator-lr", default=2e-4, type=float)
parser.add_argument("--discriminator-lr", default=2e-4, type=float)
parser.add_argument("--batch-size", default=128, type=int)
parser.add_argument("--latent-dim", default=100, type=int)
parser.add_argument("--epochs", default=50, type=int)
args = parser.parse_args()
def normalize(img, _):
img = tf.image.resize(img, size=(32, 32))
img = (img - 127.5) / 127.5 # Normalize the images to [-1, 1]
return img
dataset = (
tfds.load("mnist", as_supervised=True, split="train+test")
.map(normalize)
.cache()
.shuffle(1024)
.batch(args.batch_size)
.prefetch(AUTOTUNE)
)
init = RandomNormal(stddev=0.02)
generator = tf.keras.models.Sequential(
[
Conv2DTranspose(
128 * 4,
(4, 4),
strides=(1, 1),
use_bias=False,
kernel_initializer=init,
input_shape=(1, 1, args.latent_dim),
),
BatchNormalization(),
ReLU(), # (None, 4, 4, 128 * 4)
Conv2DTranspose(
128 * 2,
(4, 4),
strides=(2, 2),
padding="same",
use_bias=False,
kernel_initializer=init,
),
BatchNormalization(),
ReLU(), # (None, 8, 8, 128 * 2)
Conv2DTranspose(
128,
(4, 4),
strides=(2, 2),
padding="same",
use_bias=False,
kernel_initializer=init,
),
BatchNormalization(),
ReLU(), # (None, 16, 16, 128)
Conv2DTranspose(
1,
(4, 4),
strides=(2, 2),
padding="same",
use_bias=False,
kernel_initializer=init,
activation="tanh",
), # (None, 32, 32, 1)
]
)
discriminator = tf.keras.models.Sequential(
[
Conv2D(
128,
(4, 4),
strides=(2, 2),
padding="same",
input_shape=(32, 32, 1),
use_bias=False,
kernel_initializer=init,
),
LeakyReLU(0.2), # (None, 16, 16, 128)
Conv2D(
128 * 2,
(4, 4),
strides=(2, 2),
padding="same",
use_bias=False,
kernel_initializer=init,
),
BatchNormalization(),
LeakyReLU(0.2), # (None, 8, 8, 128 * 2)
Conv2D(
128 * 4,
(4, 4),
strides=(2, 2),
padding="same",
use_bias=False,
kernel_initializer=init,
),
BatchNormalization(),
LeakyReLU(0.2), # (None, 4, 4, 128 * 4)
Conv2D(
1,
(4, 4),
strides=(1, 1),
use_bias=False,
kernel_initializer=init,
),
Flatten(),
]
)
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
generator_optimizer = tf.keras.optimizers.Adam(
args.generator_lr, beta_1=0.5
)
discriminator_optimizer = tf.keras.optimizers.Adam(
args.discriminator_lr, beta_1=0.5
)
gan = GAN(discriminator, generator, args.latent_dim)
gan.compile(discriminator_optimizer, generator_optimizer, cross_entropy)
# Seed for generating images
seed = tf.random.normal([NUM_EXAMPLES_TO_GENERATE, 1, 1, args.latent_dim])
class GANMonitor(tf.keras.callbacks.Callback):
def __init__(self, log_dir, latent_vectors):
super().__init__()
self.file_writer = tf.summary.create_file_writer(log_dir)
self.latent_vectors = latent_vectors
def on_epoch_end(self, epoch, logs=None):
generated_images = self.model.generator(self.latent_vectors)
with self.file_writer.as_default():
tf.summary.image(
"Generated Images",
generated_images,
max_outputs=NUM_EXAMPLES_TO_GENERATE,
step=epoch,
)
gan.fit(
dataset,
epochs=args.epochs,
callbacks=[
TensorBoard(log_dir=args.log_dir, profile_batch=0),
GANMonitor(log_dir=args.log_dir, latent_vectors=seed),
],
)