-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
172 lines (143 loc) · 5.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
from argparse import ArgumentParser
import tensorflow as tf
import tensorflow_datasets as tfds
from networks import TransferNet, VGG
from utils import load_img, style_loss, content_loss, resize
AUTOTUNE = tf.data.experimental.AUTOTUNE
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--log-dir", default="model")
parser.add_argument("--style-dir", required=True)
parser.add_argument("--lr", default=1e-4, type=float)
parser.add_argument("--lr-decay", default=5e-5, type=float)
parser.add_argument("--max-steps", default=160_000, type=int)
parser.add_argument("--image-size", default=256, type=int)
parser.add_argument("--batch-size", default=8, type=int)
parser.add_argument("--content-weight", default=1, type=float)
parser.add_argument("--style-weight", default=10, type=float)
parser.add_argument("--log-freq", default=500, type=int)
args = parser.parse_args()
content_paths = ["avril_cropped.jpg", "chicago_cropped.jpg"]
style_paths = ["impronte_d_artista_cropped.jpg", "ashville_cropped.jpg"]
test_content_images = tf.concat(
[load_img(f"images/content/{f}") for f in content_paths], axis=0
)
test_style_images = tf.concat(
[load_img(f"images/style/{f}") for f in style_paths], axis=0
)
content_layer = "block4_conv1" # relu-4-1
style_layers = [
"block1_conv1", # relu1-1
"block2_conv1", # relu2-1
"block3_conv1", # relu3-1
"block4_conv1", # relu4-1
]
vgg = VGG(content_layer, style_layers)
transformer = TransferNet(content_layer)
vgg(test_style_images)
def resize_and_crop(img, min_size):
img = resize(img, min_size=min_size)
img = tf.image.random_crop(
img, size=(args.image_size, args.image_size, 3)
)
img = tf.cast(img, tf.float32)
return img
def process_content(features):
img = features["image"]
img = resize_and_crop(img, min_size=286)
return img
def process_style(file_path):
img = tf.io.read_file(file_path)
img = tf.image.decode_jpeg(img, channels=3)
img = resize_and_crop(img, min_size=512)
return img
ds_coco = (
tfds.load("coco/2014", split="train")
.map(process_content, num_parallel_calls=AUTOTUNE)
.repeat()
.batch(args.batch_size)
.prefetch(AUTOTUNE)
)
ds_pbn = (
tf.data.Dataset.list_files(os.path.join(args.style_dir, "*.jpg"))
.map(process_style, num_parallel_calls=AUTOTUNE)
# Ignore too large or corrupt image files
.apply(tf.data.experimental.ignore_errors())
.repeat()
.batch(args.batch_size)
.prefetch(AUTOTUNE)
)
ds = tf.data.Dataset.zip((ds_coco, ds_pbn))
optimizer = tf.keras.optimizers.Adam(learning_rate=args.lr)
ckpt = tf.train.Checkpoint(optimizer=optimizer, transformer=transformer)
manager = tf.train.CheckpointManager(ckpt, args.log_dir, max_to_keep=1)
ckpt.restore(manager.latest_checkpoint)
if manager.latest_checkpoint:
print(f"Restored from {manager.latest_checkpoint}")
else:
print("Initializing from scratch.")
summary_writer = tf.summary.create_file_writer(args.log_dir)
with summary_writer.as_default():
tf.summary.image(
"content", test_content_images / 255.0, step=0, max_outputs=6
)
tf.summary.image(
"style", test_style_images / 255.0, step=0, max_outputs=6
)
train_loss = tf.keras.metrics.Mean(name="train_loss")
train_style_loss = tf.keras.metrics.Mean(name="train_style_loss")
train_content_loss = tf.keras.metrics.Mean(name="train_content_loss")
@tf.function
def train_step(content_img, style_img):
t = transformer.encode(content_img, style_img, alpha=1.0)
with tf.GradientTape() as tape:
stylized_img = transformer.decode(t)
_, style_feat_style = vgg(style_img)
content_feat_stylized, style_feat_stylized = vgg(stylized_img)
tot_style_loss = args.style_weight * style_loss(
style_feat_style, style_feat_stylized
)
tot_content_loss = args.content_weight * content_loss(
t, content_feat_stylized
)
loss = tot_style_loss + tot_content_loss
gradients = tape.gradient(loss, transformer.trainable_variables)
optimizer.apply_gradients(
zip(gradients, transformer.trainable_variables)
)
train_loss(loss)
train_style_loss(tot_style_loss)
train_content_loss(tot_content_loss)
for step, (content_images, style_images) in enumerate(ds):
new_lr = args.lr / (1.0 + args.lr_decay * step)
optimizer.learning_rate.assign(new_lr)
train_step(content_images, style_images)
if step % args.log_freq == 0:
with summary_writer.as_default():
tf.summary.scalar("loss/total", train_loss.result(), step=step)
tf.summary.scalar(
"loss/style", train_style_loss.result(), step=step
)
tf.summary.scalar(
"loss/content", train_content_loss.result(), step=step
)
stylized_images = transformer(
test_content_images, test_style_images
)
tf.summary.image(
"stylized",
stylized_images / 255.0,
step=step,
max_outputs=6,
)
print(
f"Step {step}, "
f"Loss: {train_loss.result()}, "
f"Style Loss: {train_style_loss.result()}, "
f"Content Loss: {train_content_loss.result()}"
)
print(f"Saved checkpoint: {manager.save()}")
train_loss.reset_states()
train_style_loss.reset_states()
train_content_loss.reset_states()