You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
cfg.custom_datasets=CN() # this node contains information about custom classification datasets
112
-
cfg.custom_datasets.roots= [] # a list of root folders in case of ImagesFolder fromat or list of annotation files with paths relative to the list's parent folder
113
+
cfg.custom_datasets.roots= [] # a list of root folders in case of ImagesFolder fromat
114
+
# or list of annotation files with paths relative to the list's parent folder
113
115
cfg.custom_datasets.types= [] # a list of types (classification or classification_image_folder)
114
116
cfg.custom_datasets.names= [] # aliases for custom datasets that can be used in the data section. Should be unique
115
117
@@ -136,7 +138,8 @@ def get_default_config():
136
138
cfg.train.new_layers= ['classifier'] # newly added layers with default lr
137
139
cfg.train.base_lr_mult=0.1# learning rate multiplier for base layers
138
140
cfg.train.lr_scheduler='single_step'
139
-
cfg.train.target_metric='train_loss'# define which metric to use with reduce_on_plateau scheduler. Two possible variants are available: 'test_acc' and 'train_loss'
141
+
cfg.train.target_metric='train_loss'# define which metric to use with reduce_on_plateau scheduler.
142
+
# Two possible variants are available: 'test_acc' and 'train_loss'
140
143
cfg.train.base_scheduler=''
141
144
cfg.train.stepsize= [20] # stepsize to decay learning rate
0 commit comments