-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrtc_CMAES.py
319 lines (287 loc) · 13.4 KB
/
rtc_CMAES.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import cma
from cma.fitness_transformations import EvalParallel2
import numpy as np
import os
import time
from csv import writer
from cart_pole.model.parameters import Cartpole
from cart_pole.controllers.lqr.RoAest.utils import vol_ellipsoid, storeEllipse, ellipseVolume_convexHull, getEllipseFromCsv
from cart_pole.controllers.lqr.RoAest.plots import plot_ellipse
from cart_pole.utilities.process_data import prepare_trajectory
from cart_pole.controllers.lqr.RoAest.SOSest import bisect_and_verify
from cart_pole.trajectory_optimization.dirtrel.dirtrelTrajOpt import RobustDirtranTrajectoryOptimization
from cart_pole.trajectory_optimization.dirtran.dirtranTrajOpt import DirtranTrajectoryOptimization
from cart_pole.simulation.simulator import StepSimulator
from cart_pole.controllers.tvlqr.RoAest.PROBest import probTVROA
from cart_pole.controllers.tvlqr.RoAest.utils import funnelVolume_convexHull, storeFunnel
from cart_pole.model.parameters import generateUrdf
from pydrake.all import Linearize, \
LinearQuadraticRegulator, \
DiagramBuilder, \
AddMultibodyPlantSceneGraph, \
Parser
import signal
class timeout:
def __init__(self, seconds=1, error_message='Timeout'):
self.seconds = seconds
self.error_message = error_message
def handle_timeout(self, signum, frame):
raise TimeoutError(self.error_message)
def __enter__(self):
signal.signal(signal.SIGALRM, self.handle_timeout)
signal.alarm(self.seconds)
def __exit__(self, type, value, traceback):
signal.alarm(0)
def roaVolComputation(sys, traj_path, funnel_path, options):
# Time invarying RoA estimation
builder = DiagramBuilder()
plant, scene_graph = AddMultibodyPlantSceneGraph(builder, 0)
Parser(plant).AddModelFromFile(options["urdf"])
plant.Finalize()
tilqr_context = plant.CreateDefaultContext()
input_i = plant.get_actuation_input_port().get_index()
output_i = plant.get_state_output_port().get_index()
plant.get_actuation_input_port().FixValue(tilqr_context, [0])
tilqr_context.SetContinuousState(options["xG"])
linearized_cartpole = Linearize(plant, tilqr_context, input_i, output_i,
equilibrium_check_tolerance=1e-3)
(Kf, Sf) = LinearQuadraticRegulator(linearized_cartpole.A(), linearized_cartpole.B(), options["QN"], np.array([options["R"]]))
hyperparams = {"taylor_deg": 3,
"lambda_deg": 2}
rhof = bisect_and_verify(sys,Kf,Sf,hyperparams)
# Probabilistic time varying RoA est
traj_dict = prepare_trajectory(traj_path)
traj_x1 = traj_dict["des_cart_pos_list"]
traj_x2 = traj_dict["des_pend_pos_list"]
traj_x3 = traj_dict["des_cart_vel_list"]
traj_x4 = traj_dict["des_pend_vel_list"]
controller_options = {"T_nom": traj_dict["des_time_list"],
"U_nom": traj_dict["des_force_list"],
"X_nom": np.vstack((traj_x1, traj_x2, traj_x3, traj_x4)),
"Q": options["Q"],
"R": np.array([options["R"]]),
"xG": options["xG"]}
cartpole = {"urdf": options["urdf"],
"sys": sys,
"x_lim": options["cart_pos_lim"]}
sim = StepSimulator(cartpole, controller_options)
roaConf = {'rho00': 10,
'rho_f': rhof,
'nSimulations': 100,
'dt_sim': 0.008}
estimator = probTVROA(roaConf,sim)
#with timeout(2000):
(rho, S) = estimator.doEstimate()
# Store the funnel and compute the volume of the funnel with the convex hull formulation
storeFunnel(S,rho,sim.T_nom,funnel_path)
RoA_volume = funnelVolume_convexHull(funnel_path, traj_path)
return RoA_volume
class CMAES_Opt():
def __init__(self, params, cost, results_dir, verbose = False):
''' Assume params = dict{sys, maxfevals,q_bound,r_bound,q11,q22,r}'''
self.initial_par = np.array([params["q11"],params["q22"],params["r"]])
self.max_fevals = params["maxfevals"]
self.q_bound = params["q_bound"]
self.r_bound = params["r_bound"]
self.sys = params["sys"]
self.urdf = params["urdf"]
self.verbose = verbose
self.cost = cost
self.RoA_path = results_dir+"/Sosfunnel_CMAES.csv"
self.traj_path = results_dir+"/trajectory_CMAES.csv"
self.optimal_traj_path = results_dir+"/trajectoryOptimal_CMAES.csv"
self.optimal_data_path = results_dir+"/CooptData_CMAES.csv"
self.results_dir = results_dir
if self.cost == "volumeDIRTREL":
self.objective_value_fail = -0.0001 # volume in case of failure
elif self.cost == "volumeDIRTRAN":
self.objective_value_fail = -0.0001 # volume in case of failure
elif self.cost == "lwDIRTREL":
self.objective_value_fail = 100000 # cost in case of failure
else:
print("Wrong cost option")
assert False
def objectiveFunction(self,optimized_par):
# Solving direct transcription
options = {"N": 201,
"x0": [0, np.pi, 0, 0],
"xG": [0, 0, 0, 0],
"hBounds": [0.01, 0.06],
"fl": 6,
"cart_pos_lim": 0.3,
"QN": np.diag([100, 100, 100, 100]),
"R": optimized_par[2],
"Q": np.diag([optimized_par[0],optimized_par[1], 1, 1]),
"time_penalization": 0,
"urdf": self.urdf,
"Rl": .1,
"QNl": np.diag([10, 10, .1, .1]),
"Ql": np.diag([10, 10, .1, .1]),
"D": 0.2*0.2,
"E1": np.zeros((4,4)),
"tf0": 8}
if self.cost == "volumeDIRTREL" or self.cost == "lwDIRTREL":
trajOpt = RobustDirtranTrajectoryOptimization(self.sys, options)
elif self.cost == "volumeDIRTRAN":
trajOpt = DirtranTrajectoryOptimization(self.sys,options)
try:
with timeout(seconds=300):
T, X, U = trajOpt.ComputeTrajectory()
traj_data = np.vstack((T, X[0], X[1], X[2], X[3], U)).T
np.savetxt(self.traj_path, traj_data, delimiter=',',
header="time,pos,vel,torque", comments="")
except:
if self.verbose:
print("TrajOpt ERROR, The new " +self.cost+ " is: ", self.objective_value_fail)
return self.objective_value_fail
# Stabilizability check TODO
# Computation of the objective function
if self.cost == "volumeDIRTREL" or self.cost == "volumeDIRTRAN":
try:
objective_value = -roaVolComputation(self.sys, self.traj_path, self.RoA_path, options)
except:
if self.verbose:
print("RoA estimation ERROR, The new " +self.cost+ " is: ", self.objective_value_fail)
return self.objective_value_fail
else:
objective_value = trajOpt.getOptimalCost()
# Saving the ungoing optimization data
controller_data = [optimized_par[0], optimized_par[1], optimized_par[2],objective_value]
csvfile = open(self.optimal_data_path, 'a')
wr = writer(csvfile)
wr.writerow(np.array(controller_data))
csvfile.close()
# Verbose optimization print
if self.verbose:
print("Inner optimization function evaluation (q11, q22, r, obj): ", controller_data)
return objective_value
def solve(self, sigma0=3,
popsize_factor=3,
maxfevals=1000,
tolfun=1e-11,
tolx=1e-11,
tolstagnation=100,
num_proc=1,
sd = "data/cart_pole/outcmaes/"):
# Define the optimization options and constraints
bounds = np.array([self.q_bound,self.q_bound,self.r_bound]).T
sd = self.results_dir+"/outcmaes/"
opts = cma.CMAOptions()
opts.set("bounds", list(bounds))
opts.set("verbose", -3)
opts.set("popsize_factor", popsize_factor)
opts.set("verb_filenameprefix", sd)
opts.set("tolfun", tolfun)
opts.set("maxfevals", maxfevals)
opts.set("tolx", tolx)
opts.set("tolstagnation", tolstagnation)
if num_proc > 1:
es = cma.CMAEvolutionStrategy(self.initial_par,
sigma0,
opts)
start = time.time()
with EvalParallel2(self.objectiveFunction, num_proc) as eval_all:
while not es.stop():
X = es.ask()
es.tell(X, eval_all(X))
es.disp()
es.logger.add()
else:
es = cma.CMAEvolutionStrategy(self.initial_par,
sigma0,
opts)
start = time.time()
es.optimize(self.objectiveFunction)
optimization_time = int((time.time() - start)/60)
# Computing and saving the optimal trajectory
optimal_options = {"N": 201,
"x0": [0, np.pi, 0, 0],
"xG": [0, 0, 0, 0],
"hBounds": [0.01, 0.06],
"fl": 6,
"cart_pos_lim": 0.3,
"QN": np.diag([100, 100, 100, 100]),
"R": es.result.xbest[2],
"Q": np.diag([es.result.xbest[0],es.result.xbest[1], 1, 1]),
"time_penalization": 0,
"urdf": self.urdf,
"Rl": .1,
"QNl": np.diag([10, 10, .1, .1]),
"Ql": np.diag([10, 10, .1, .1]),
"D": 0.2*0.2,
"E1": np.zeros((4,4)),
"tf0": 8}
if self.cost == "volumeDIRTREL" or self.cost == "lwDIRTREL":
trajOpt = RobustDirtranTrajectoryOptimization(self.sys, optimal_options)
elif self.cost == "volumeDIRTRAN":
trajOpt = DirtranTrajectoryOptimization(self.sys, optimal_options)
try:
T, X, U = trajOpt.ComputeTrajectory()
traj_data = np.vstack((T, X[0], X[1], X[2], X[3], U)).T
np.savetxt(self.optimal_traj_path, traj_data, delimiter=',',
header="time,pos,vel,torque", comments="")
except:
if self.verbose:
print("No trajectory founded, probably due to a bad design...")
# Print the result
if self.verbose:
print('The process took %d minutes' % optimization_time)
print('Optimal solution: ', es.result.xbest)
print('Optimal value of the objective function: ', es.result.fbest)
return es.result.xbest, es.result.fbest
if __name__ == "__main__":
import argparse
from datetime import datetime
parser = argparse.ArgumentParser(description='Cost choice.')
parser.add_argument("-cost", help="Optimize the DIRTRAN volume(volumeDIRTRAN) or the DIRTREL volume(volumeDIRTREL) or the DIRTREL cost function(lwDIRTREL).")
args = parser.parse_args()
date = datetime.now().strftime("%d%m%Y-%H:%M:%S")
results_dir = "data/cart_pole/optCMAES_"+date+"_"+args.cost
if not os.path.exists(results_dir):
os.makedirs(results_dir)
if args.cost == "lwDIRTREL":
max_f_eval = 300
else:
max_f_eval = 1
sys = Cartpole("short")
old_Mp = sys.Mp
sys.Mp = 0.227
sys.Jp = sys.Jp + (sys.Mp-old_Mp)*(sys.lp**2)
sys.fl = 6
urdf_path = generateUrdf(sys.Mp, sys.lp, sys.Jp)
optimization_params = {"sys": sys,
"urdf": urdf_path,
"xG": [0,0,0,0],
"maxfevals": max_f_eval,
"q_bound": [1,20],
"r_bound": [5,15],
"q11": 10,
"q22": 10,
"r": 10}
cost = args.cost
cmaes = CMAES_Opt(optimization_params, cost, results_dir = results_dir, verbose = True)
solution, fbest = cmaes.solve(num_proc = 2, maxfevals=optimization_params["maxfevals"])
Q_opt = np.diag([solution[0], solution[1],1,1])
R_opt = solution[2]
print("The optimal Q is: ", Q_opt)
print("The optimal R is: ", [R_opt])
RoA_path = results_dir+"/RoA_CMAES.csv"
traj_path = cmaes.optimal_traj_path
roa_options = {"QN": np.diag([100,100,100,100]),
"Q": Q_opt,
"R": R_opt,
"urdf": optimization_params["urdf"],
"xG": optimization_params["xG"],
"cart_pos_lim": 0.3}
volume = roaVolComputation(sys,traj_path,RoA_path,roa_options)
init_RoA_path = results_dir+"/initRoA_CMAES.csv"
init_traj_path = "data/cart_pole/dirtran/trajectory.csv"
roa_options = {"QN": np.diag([100,100,100,100]),
"Q": np.diag([optimization_params["q11"],optimization_params["q22"],1,1]),
"R": optimization_params["r"],
"urdf": optimization_params["urdf"],
"xG": optimization_params["xG"],
"cart_pos_lim": 0.3}
init_volume = roaVolComputation(sys,init_traj_path,init_RoA_path,roa_options)
print("Volume of CMA-ES funnel:", volume)
print("Volume of init funnel:", init_volume)