-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathattribute_class.py
322 lines (275 loc) · 10.7 KB
/
attribute_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import copy
import os
import random
import gc
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from apex import amp
from apex.parallel import DistributedDataParallel
from torch import distributed
from torch.utils import data
from torch.utils.data.distributed import DistributedSampler
from torch.cuda.amp import autocast
from inplace_abn import ABN, InPlaceABN, InPlaceABNSync
import argparser
import tasks
import utils
from dataset import (AdeSegmentationIncremental,
VOCSegmentationIncremental,
CityscapesSegmentationIncremental, transform)
from metrics import StreamSegMetrics
from segmentation_module import make_model
from utils.logger import Logger
from run import get_dataset
from captum.attr import LayerIntegratedGradients
def get_dataset(opts):
""" Dataset And Augmentation
"""
train_transform = transform.Compose(
[
transform.RandomResizedCrop(opts.crop_size, (0.5, 2.0)),
transform.RandomHorizontalFlip(),
transform.ToTensor(),
transform.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
if opts.crop_val:
val_transform = transform.Compose(
[
transform.Resize(size=opts.crop_size),
transform.CenterCrop(size=opts.crop_size),
transform.ToTensor(),
transform.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
else:
# no crop, batch size = 1
val_transform = transform.Compose(
[
transform.ToTensor(),
transform.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
print(opts.dataset)
labels, labels_old, path_base = tasks.get_task_labels(opts.dataset, opts.task, opts.step)
labels_cum = labels_old + labels
if opts.dataset == 'voc':
dataset = VOCSegmentationIncremental
elif opts.dataset == 'ade':
dataset = AdeSegmentationIncremental
elif opts.dataset == 'cityscapes_domain':
dataset = CityscapesSegmentationIncrementalDomain
elif opts.dataset == 'cityscapes':
dataset = CityscapesSegmentationIncremental
elif opts.dataset == 'bdd':
dataset = BDDSegmentationIncremental
else:
raise NotImplementedError
if opts.overlap:
path_base += "-ov"
if not os.path.exists(path_base):
os.makedirs(path_base, exist_ok=True)
train_dst = dataset(
root=opts.data_root,
train=True,
transform=train_transform,
labels=list(labels),
labels_old=list(labels_old),
idxs_path=path_base + f"/train-{opts.step}.npy",
buffer_path=path_base + f"/buffer.npy",
masking=not opts.no_mask,
overlap=opts.overlap,
disable_background=opts.disable_background,
data_masking=opts.data_masking,
test_on_val=opts.test_on_val,
step=opts.step,
buffer_size=opts.buffer_size
)
if not opts.no_cross_val: # if opts.cross_val:
train_len = int(0.8 * len(train_dst))
val_len = len(train_dst) - train_len
train_dst, val_dst = torch.utils.data.random_split(train_dst, [train_len, val_len])
else: # don't use cross_val
val_dst = dataset(
root=opts.data_root,
train=False,
transform=val_transform,
labels=list(labels),
labels_old=list(labels_old),
idxs_path=path_base + f"/val-{opts.step}.npy",
masking=not opts.no_mask,
overlap=True,
disable_background=opts.disable_background,
data_masking=opts.data_masking,
step=opts.step
)
image_set = 'train' if opts.val_on_trainset else 'val'
test_dst = dataset(
root=opts.data_root,
train=opts.val_on_trainset,
transform=val_transform,
labels=list(labels_cum),
idxs_path=path_base + f"/test_on_{image_set}-{opts.step}.npy",
disable_background=opts.disable_background,
test_on_val=opts.test_on_val,
step=opts.step,
ignore_test_bg=opts.ignore_test_bg
)
return train_dst, val_dst, test_dst, len(labels_cum)
def main(opts):
print(f"Learning for {len(opts.step)} with lrs={opts.lr}.")
all_val_scores = []
for i, (step, lr) in enumerate(zip(copy.deepcopy(opts.step), copy.deepcopy(opts.lr))):
if i > 0:
opts.step_ckpt = None
opts.step = step
opts.lr = lr
distributed.init_process_group(backend='nccl', init_method='env://')
device_id, device = opts.local_rank, torch.device(opts.local_rank)
rank, world_size = distributed.get_rank(), distributed.get_world_size()
torch.cuda.set_device(device_id)
task_name = f"{opts.task}-{opts.dataset}"
logdir_full = f"{opts.logdir}/{task_name}/{opts.name}/"
if rank == 0:
logger = Logger(
logdir_full, rank=rank, debug=opts.debug, summary=opts.visualize, step=opts.step
)
else:
logger = Logger(logdir_full, rank=rank, debug=opts.debug, summary=False)
logger.print(f"Device: {device}")
# Set up random seed
torch.manual_seed(opts.random_seed)
torch.cuda.manual_seed(opts.random_seed)
np.random.seed(opts.random_seed)
random.seed(opts.random_seed)
# xxx Set up dataloader
train_dst, val_dst, test_dst, n_classes = get_dataset(opts)
# reset the seed, this revert changes in random seed
random.seed(opts.random_seed)
new_cls = tasks.get_task_labels_attr(opts.dataset, opts.task, opts.step)
print('new cls for attribution ',new_cls)
if opts.step == 0: # if step 0, we don't need to instance the model_old
model_old = None
else: # instance model_old
model_old = make_model(
opts, classes=tasks.get_per_task_classes(opts.dataset, opts.task, opts.step - 1)
)
[model_old] = amp.initialize(
[model_old.to(device)], opt_level=opts.opt_level, cast_model_type=torch.float32
)
model_old = DistributedDataParallel(model_old.to(device))
if opts.step_ckpt is not None:
path = opts.step_ckpt
else:
path = f"{opts.checkpoint}{task_name}_{opts.name}_{opts.step - 1}.pth"
if os.path.exists(path):
step_checkpoint = torch.load(path, map_location="cpu")
path = f"{opts.checkpoint}{task_name}_{opts.name}_{opts.step - 1}.pth"
model_old.load_state_dict(
step_checkpoint['model_state'], strict=False
)
#model_old.to(device="cuda")
print("Old Model weights loaded for computing attributions")
del step_checkpoint
def cast_running_stats(m):
if isinstance(m, ABN):
m.running_mean = m.running_mean.float()
m.running_var = m.running_var.float()
imp_c = None
if model_old is not None and not opts.no_att and not opts.random_channels and not opts.test:
torch.cuda.empty_cache()
model_old.eval()
exp_loader = data.DataLoader(
train_dst,
batch_size=1,
sampler=DistributedSampler(train_dst, num_replicas=world_size, rank=rank),
num_workers=1,
drop_last=True
)
def prev(inp):
out = model_old(inp)[0]
return out.sum(dim=(2,3))
torch.cuda.empty_cache()
lig = LayerIntegratedGradients(forward_func=prev, layer=model_old.module.cls[0])
print('bkg cls ', model_old.module.cls[0].weight[0].data.shape)
gc.collect()
attr = []
miss = 0
imp = []
if opts.dataset == 'ade':
n_step = 30
else:
n_step = 50
for m in new_cls:
print('class ',str(m))
for cur_step, (images, labels) in enumerate(exp_loader):
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.long)
if opts.mask_att:
mask = labels == m
mask = F.interpolate(mask.unsqueeze(0).float(), size=([32, 32]), mode="nearest")
mask = mask.expand([1, 256, 32, 32])
if mask[0][0].sum() < 1:
miss += 1
continue
torch.cuda.empty_cache()
del labels
with torch.no_grad():
attribution = lig.attribute(images, target=0, n_steps=n_step, attribute_to_layer_input=True)
print(cur_step, attribution[0].shape)
attr.append(attribution[0]*mask)
del images
del mask
del attribution
torch.cuda.empty_cache()
gc.collect()
if cur_step > 1999 and opts.dataset == 'ade' and opts.task != "50":
break
if opts.task == "50" and cur_step > 4999:
break
print('number of missed images ',miss)
att = torch.cat(attr, dim=0)
print('att ',att.shape)
print('Max after mean')
att = torch.mean(att, dim=0)
print('avg att ',att.shape)
att = nn.MaxPool2d(32)(att)
print('after max pool ',att.shape)
top = int(opts.att)
print('top weights ',top)
if top != 0:
if top == 10:
high = 26
elif top == 25:
high = 64
elif top == 50:
high = 128
elif top == 75:
high = 192
top_att = torch.topk(att.squeeze(),high)[1]
imp_c = torch.zeros_like(att)
imp_c[top_att] = 1
imp_c = imp_c > 0
if imp_c is not None:
print('important channels ',imp_c.shape, imp_c.sum())
else:
print("imp_c is None")
imp.append(imp_c)
imp = torch.stack(imp)
print("Attributions generated for ",str(len(imp))," classes")
att_method = path.split('/')[-2]
path = f"channels/{att_method}"
os.makedirs(path, exist_ok=True)
imp_name = f"channels/{att_method}/imp_{opts.method}_{opts.dataset}_{opts.task}_{opts.step}.pt"
torch.save(imp,imp_name)
if low_c is not None:
low_name = f"channels/{att_method}/low_{opts.method}_{opts.dataset}_{opts.task}_{opts.step}.pt"
torch.save(low_c,low_name)
if __name__ == '__main__':
parser = argparser.get_argparser()
opts = parser.parse_args()
opts = argparser.modify_command_options(opts)
os.makedirs(f"{opts.checkpoint}", exist_ok=True)
main(opts)