-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path9_Mean_Age.py
45 lines (35 loc) · 1.36 KB
/
9_Mean_Age.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Calculating mean age at infection, considering simple naive SIR model
# Code developed by Denise Cammarota
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import sys
import glob
import datetime
files = glob.glob('./Data/processed/*.csv')
data_total = pd.DataFrame()
for file in files:
# reading data
data_test = pd.read_csv(file,
delimiter = ',',
index_col=False,
parse_dates = ['DT_SIN_PRI','DT_NOTIFIC'], encoding='cp1252')
# get the year we are working with in question
# first column is read differently
data_test = data_test.drop(columns = ['Unnamed: 0'])
data_total = data_total.append(data_test)
# Doing this for basic data analysis
data_total['CASO'] = 1
# Separating year and epidemiological week
data_total['SEM_EPI'] = data_total['SEM_PRI'].astype(str).str[4:]
data_total['ANO_EPI'] = data_total['SEM_PRI'].astype(str).str[:4]
# Uniting them with a -
data_total['DATA_EPI'] = data_total['ANO_EPI'] + '-' + data_total['SEM_EPI']
data_total = data_total.groupby(['ID_MN_RESI'])['NU_IDADE_N'].mean()
data_total = data_total.reset_index()
mu = 1/80
R0 = 15
data_total['p'] = 1 - ((1/data_total['NU_IDADE_N'])*(1/(mu*(R0-1))))
data_total = data_total[data_total['p'] >= 0]
data_total.to_csv('./Data/analyzed/SIR_naive_p.csv')