-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path6_Epidemic_Mun_Curves.py
98 lines (59 loc) · 2.63 KB
/
6_Epidemic_Mun_Curves.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Doing epidemic curve of all, local and non-local cases infection,
# years 2007 to 2021, difference between municipality of residence and of report
# Code developed by Denise Cammarota
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import sys
import glob
import datetime
files = glob.glob('./Data/processed/*.csv')
data_total = pd.DataFrame()
id_municip = 160030
for file in files:
# reading data
data_test = pd.read_csv(file,
delimiter = ',',
index_col=False,
parse_dates = ['DT_SIN_PRI','DT_NOTIFIC'], encoding='cp1252')
# get the year we are working with in question
# first column is read differently
data_test = data_test.drop(columns = ['Unnamed: 0'])
data_total = data_total.append(data_test)
# Doing this for basic data analysis
data_total['CASO'] = 1
# How many cases notified here?
n_notified = sum(data_total['ID_MUNICIP'] == id_municip)
# How many of these cases reside here actually?
data_notified = data_total[data_total['ID_MUNICIP'] == id_municip]
n_notified_res = sum(data_notified['ID_MN_RESI'] == id_municip)
# How many cases residing here?
n_resident = sum(data_total['ID_MN_RESI'] == id_municip)
data_resident = data_total[data_total['ID_MN_RESI'] == id_municip]
data_resident = data_resident.groupby(['ID_MUNICIP'])['CASO'].sum()
data_resident = data_resident.reset_index()
# How many cases reside in another country?
data_res_ab = data_total[data_total['ID_MUNICIP'] == id_municip]
data_res_ab = data_res_ab[data_res_ab['ID_PAIS'] != 1]
n_res_ab = data_res_ab.shape[0]
# How many cases were infected in another country?
data_inf_ab = data_total[data_total['ID_MUNICIP'] == id_municip]
data_inf_ab = data_inf_ab[data_inf_ab['COPAISINF'] != 1]
n_inf_ab = data_inf_ab.shape[0]
# Doing basic epidemiological curves
# Separating year and epidemiological week
data_total['SEM_EPI'] = data_total['SEM_PRI'].astype(str).str[4:]
data_total['ANO_EPI'] = data_total['SEM_PRI'].astype(str).str[:4]
# Uniting them with a -
data_total['DATA_EPI'] = data_total['ANO_EPI'] + '-' + data_total['SEM_EPI']
# Resident cases
data_res = data_total[data_total['ID_MN_RESI'] == id_municip]
res_curve = data_res.groupby(['DATA_EPI'])['CASO'].sum()
res_curve = res_curve.reset_index()
res_curve.to_csv('./Data/analyzed/res_epi_curve_'+str(id_municip)+'.csv')
# Notified cases
data_not = data_total[data_total['ID_MUNICIP'] == id_municip]
not_curve = data_not.groupby(['DATA_EPI'])['CASO'].sum()
not_curve = not_curve.reset_index()
not_curve.to_csv('./Data/analyzed/not_epi_curve_'+str(id_municip)+'.csv')