-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_Basic_Analysis.py
67 lines (51 loc) · 2.64 KB
/
1_Basic_Analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Doing basic data exploration and analysis
# only confirmed cases, assign year and week of first symptoms
# years 2007 to 2021
# Code developed by Denise Cammarota
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import sys
import glob
files = glob.glob('./Data/processed/*.csv')
data_total = pd.DataFrame()
for file in files:
# reading data
data_test = pd.read_csv(file,
delimiter = ',',
index_col=False,
parse_dates = ['DT_SIN_PRI','SEM_PRI','DT_NOTIFIC','SEM_NOT'], encoding='cp1252')
# get the year we are working with in question
# first column is read differently
data_test = data_test.drop(columns = ['Unnamed: 0'])
data_total = data_total.append(data_test)
# Doing basic data analysis
data_total['CASO'] = 1
# Replace vaccination status nan for 9
data_total['CS_VACINA'] = data_total['CS_VACINA'].replace(np.nan,9)
## Cases per state total
cases_state = data_total.groupby(['SG_UF_NOT'])['CASO'].sum()
cases_state = cases_state.reset_index()
## Cases per municipality total
cases_municipality = data_total.groupby(['ID_MUNICIP'])['CASO'].sum()
cases_municipality = cases_municipality.reset_index(name = 'CASOS')
## Vaccinated cases per municipality total
vaccinated_municipality = data_total.copy()
vaccinated_municipality = vaccinated_municipality[vaccinated_municipality['CS_VACINA'] == 1]
vaccinated_municipality = vaccinated_municipality.groupby(['ID_MUNICIP'])['CASO'].sum()
vaccinated_municipality = vaccinated_municipality.reset_index(name = 'VAC')
nonvaccinated_municipality = data_total.copy()
nonvaccinated_municipality = nonvaccinated_municipality[nonvaccinated_municipality['CS_VACINA'] == 2]
nonvaccinated_municipality = nonvaccinated_municipality.groupby(['ID_MUNICIP'])['CASO'].sum()
nonvaccinated_municipality = nonvaccinated_municipality .reset_index(name = 'N_VAC')
cases_municipality = cases_municipality.merge(vaccinated_municipality, how = 'left', on = 'ID_MUNICIP').fillna(0)
cases_municipality = cases_municipality.merge(nonvaccinated_municipality, how = 'left', on = 'ID_MUNICIP').fillna(0)
cases_municipality['I_VAC'] = cases_municipality['CASOS'] - cases_municipality['VAC'] - cases_municipality['N_VAC']
# Adding the state id number
cases_municipality['SG_UF_NOT'] = cases_municipality['ID_MUNICIP'].astype(str).str[:2].astype(int)
# Saving the data
if(not(os.path.exists('./Data/analyzed/'))):
os.makedirs('./Data/analyzed/')
path_save = './Data/analyzed/'+'basic_analysis.csv'
cases_municipality.to_csv(path_save, sep=',')