Training data-efficient image transformers & distillation through attention, arxiv
PaddlePaddle training/validation code and pretrained models for DeiT.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2021-09-27): More weights are uploaded.
- Update (2021-08-11): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
deit_tiny_distilled_224 | 74.52 | 91.90 | 5.9M | 1.1G | 224 | 0.875 | bicubic | google/baidu(rhda) |
deit_small_distilled_224 | 81.17 | 95.41 | 22.4M | 4.3G | 224 | 0.875 | bicubic | google/baidu(pv28) |
deit_base_distilled_224 | 83.32 | 96.49 | 87.2M | 17.0G | 224 | 0.875 | bicubic | google/baidu(5f2g) |
deit_base_distilled_384 | 85.43 | 97.33 | 87.2M | 49.9G | 384 | 1.0 | bicubic | google/baidu(qgj2) |
Teacher Model | Link |
---|---|
RegNet_Y_160 | google/baidu(gjsm) |
*The results are evaluated on ImageNet2012 validation set.
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./deit_base_patch16_224.pdparams
, to use the deit_base_patch16_224
model in python:
from config import get_config
from deit import build_deit as build_model
# config files in ./configs/
config = get_config('./configs/deit_base_patch16_224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./deit_base_patch16_224.pdparams')
model.set_dict(model_state_dict)
To evaluate DeiT model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg=./configs/deit_base_patch16_224.yaml \
-dataset=imagenet2012 \
-batch_size=16 \
-data_path=/path/to/imagenet/val/dataset/val \
-eval \
-pretrained=/path/to/pretrained/model/deit_base_patch16_224 # .pdparams is NOT needed
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg=./configs/deit_base_patch16_224.yaml \
-dataset=imagenet2012 \
-batch_size=16 \
-data_path=/path/to/dataset/imagenet/val \
-eval \
-pretrained=/path/to/pretrained/model/deit_base_patch16_224 # .pdparams is NOT needed
To train the DeiT Transformer model on ImageNet2012 with single GPU, download the pretrained weights of teacher model (regnety_160.pdparams
) and run the following script using command line:
sh run_train_single.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg=./configs/deit_base_patch16_224.yaml \
-dataset=imagenet2012 \
-batch_size=32 \
-data_path=/path/to/dataset/imagenet/train \
-teacher_model=/path/to/pretrained/model/regnety_160 # .pdparams is NOT needed
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg=./configs/deit_base_patch16_224.yaml \
-dataset=imagenet2012 \
-batch_size=16 \
-data_path=/path/to/dataset/imagenet/train \
-teacher_model=/path/to/pretrained/model/regnety_160 # .pdparams is NOT needed
(coming soon)
@inproceedings{touvron2021training,
title={Training data-efficient image transformers \& distillation through attention},
author={Touvron, Hugo and Cord, Matthieu and Douze, Matthijs and Massa, Francisco and Sablayrolles, Alexandre and J{\'e}gou, Herv{\'e}},
booktitle={International Conference on Machine Learning},
pages={10347--10357},
year={2021},
organization={PMLR}
}