ConvMixer: Patches Are All You Need? 🤷, OpenReview
PaddlePaddle training/validation code and pretrained models for ConvMixer.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2021-11-04): Model weights are updated.
- Update (2021-10-13): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
convmixer_1024_20 | 76.94 | 93.35 | 24.5M | 9.5G | 224 | 0.96 | bicubic | google/baidu(qpn9) |
convmixer_768_32 | 80.16 | 95.08 | 21.2M | 20.8G | 224 | 0.96 | bicubic | google/baidu(m5s5) |
convmixer_1536_20 | 81.37 | 95.62 | 51.8M | 72.4G | 224 | 0.96 | bicubic | google/baidu(xqty) |
*The results are evaluated on ImageNet2012 validation set.
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./convmixer_768_32.pdparams
, to use the convmixer_768_32
model in python:
from config import get_config
from convmixer import build_convmixer as build_model
# config files in ./configs/
config = get_config('./configs/convmixer_768_32.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./convmixer_768_32.pdparams')
model.set_dict(model_state_dict)
To evaluate ConvMixer model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg=./configs/convmixer_768_32.yaml \
-dataset=imagenet2012 \
-batch_size=16 \
-data_path=/path/to/dataset/imagenet/val \
-eval \
-pretrained=/path/to/pretrained/model/convmixer_768_32 # .pdparams is NOT needed
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg=./configs/convmixer_768_32.yaml \
-dataset=imagenet2012 \
-batch_size=16 \
-data_path=/path/to/dataset/imagenet/val \
-eval \
-pretrained=/path/to/pretrained/model/convmixer_768_32 # .pdparams is NOT needed
To train the ConvMixer Transformer model on ImageNet2012 with single GPU, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg=./configs/convmixer_768_32.yaml \
-dataset=imagenet2012 \
-batch_size=16 \
-data_path=/path/to/dataset/imagenet/train \
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg=./configs/convmixer_768_32.yaml \
-dataset=imagenet2012 \
-batch_size=32 \
-data_path=/path/to/dataset/imagenet/train \
(coming soon)