-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathh_face.py
22 lines (20 loc) · 857 Bytes
/
h_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import cv2
import math
def highlightFace(net, frame, conf_threshold=0.7):
frameOpencvDnn=frame.copy()
frameHeight=frameOpencvDnn.shape[0]
frameWidth=frameOpencvDnn.shape[1]
blob=cv2.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
net.setInput(blob)
detections=net.forward()
faceBoxes=[]
for i in range(detections.shape[2]):
confidence=detections[0,0,i,2]
if confidence>conf_threshold:
x1=int(detections[0,0,i,3]*frameWidth)
y1=int(detections[0,0,i,4]*frameHeight)
x2=int(detections[0,0,i,5]*frameWidth)
y2=int(detections[0,0,i,6]*frameHeight)
faceBoxes.append([x1,y1,x2,y2])
cv2.rectangle(frameOpencvDnn, (x1,y1), (x2,y2), (0,255,0), int(round(frameHeight/150)), 8)
return frameOpencvDnn,faceBoxes