@@ -199,7 +199,6 @@ to find instruction and links to exact configuration files and final checkpoints
199
199
* [ Classification] ( #pytorch_classification )
200
200
* [ Object detection] ( #pytorch_object_detection )
201
201
* [ Semantic segmentation] ( #pytorch_semantic_segmentation )
202
- * [ Instance segmentation] ( #pytorch_instance_segmentation )
203
202
* [ Natural language processing (3rd-party training pipelines)] ( #pytorch_nlp )
204
203
- [ TensorFlow models] ( #tensorflow-models )
205
204
* [ Classification] ( #tensorflow_classification )
@@ -246,8 +245,6 @@ to find instruction and links to exact configuration files and final checkpoints
246
245
| SSD300-VGG-BN| Filter pruning, 40%, geometric median criterion| VOC12+07 train, VOC07 eval| 77.72 (0.56)|
247
246
| SSD512-VGG-BN| INT8| VOC12+07 train, VOC07 eval| 80.12 (0.14)|
248
247
| SSD512-VGG-BN| INT8 + Sparsity 70% (Magnitude)| VOC12+07 train, VOC07 eval| 79.67 (0.59)|
249
- | MobileNet V2-FCOS| INT8| WiderFace| AP for faces > 64x64 (%): 93.44 (-0.59)|
250
- | ResNet-152b-ATSS| INT8| WiderFace| AP for faces > 64x64 (%): 94.05 (-0.24)|
251
248
252
249
<a name =" pytorch_semantic_segmentation " ></a >
253
250
#### Semantic segmentation
@@ -262,15 +259,6 @@ to find instruction and links to exact configuration files and final checkpoints
262
259
| UNet| INT8 + Sparsity 60% (Magnitude)| Mapillary| 55.65 (0.58)|
263
260
| UNet| Filter pruning, 25%, geometric median criterion| Mapillary| 55.62 (0.61)|
264
261
265
-
266
- <a name =" pytorch_instance_segmentation " ></a >
267
- #### Instance segmentation
268
-
269
- | PyTorch Model| Compression algorithm| Dataset| mAP (drop) %|
270
- | :---: | :---: | :---: | :---: |
271
- | ResNet-50-MaskRCNN (768x1024)| INT8| COCO2017| bbox: 40.8(0.0)<br />segm: 36.9(0.0)|
272
- | ResNet-101-MaskRCNN (608x608)| INT8| COCO2017| bbox: 39.1(0.25)<br />segm: 33.9(0.0)|
273
-
274
262
<a name =" pytorch_nlp " ></a >
275
263
#### NLP
276
264
0 commit comments