forked from openvinotoolkit/nncf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
327 lines (265 loc) · 12.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
"""
Copyright (c) 2020 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import sys
import os.path as osp
from pathlib import Path
import tensorflow as tf
import tensorflow_addons as tfa
from nncf.config.utils import is_accuracy_aware_training
from nncf.tensorflow.helpers.model_creation import create_compressed_model
from nncf.tensorflow import create_compression_callbacks
from nncf.tensorflow.helpers.model_manager import TFOriginalModelManager
from nncf.tensorflow.initialization import register_default_init_args
from examples.tensorflow.classification.datasets.builder import DatasetBuilder
from examples.tensorflow.common.argparser import get_common_argument_parser
from examples.tensorflow.common.callbacks import get_callbacks
from examples.tensorflow.common.callbacks import get_progress_bar
from examples.tensorflow.common.distributed import get_distribution_strategy
from examples.tensorflow.common.logger import logger
from examples.tensorflow.common.model_loader import get_model
from examples.tensorflow.common.optimizer import build_optimizer
from examples.tensorflow.common.sample_config import create_sample_config
from examples.tensorflow.common.scheduler import build_scheduler
from examples.tensorflow.common.utils import configure_paths
from examples.tensorflow.common.utils import create_code_snapshot
from examples.tensorflow.common.utils import get_saving_parameters
from examples.tensorflow.common.utils import serialize_config
from examples.tensorflow.common.utils import write_metrics
def get_argument_parser():
parser = get_common_argument_parser(precision=False,
save_checkpoint_freq=False,
print_freq=False)
parser.add_argument(
'--mode',
'-m',
nargs='+',
choices=['train', 'test', 'export'],
default='train',
help='train: performs training and validation; test: tests the model; export: exports the model.'
)
parser.add_argument(
'--dataset',
help='Dataset to use.',
choices=['imagenet', 'cifar100', 'cifar10'],
default=None
)
parser.add_argument('--test-every-n-epochs', default=1, type=int,
help='Enables running validation every given number of epochs')
parser.add_argument(
"--pretrained",
dest="pretrained",
help="Use pretrained models from the tf.keras.applications",
action="store_true",
)
return parser
def get_config_from_argv(argv, parser):
args = parser.parse_args(args=argv)
config = create_sample_config(args, parser)
configure_paths(config)
return config
def get_dataset_builders(config, num_devices, one_hot=True):
image_size = config.input_info.sample_size[-2]
train_builder = DatasetBuilder(
config,
image_size=image_size,
num_devices=num_devices,
one_hot=one_hot,
is_train=True)
val_builder = DatasetBuilder(
config,
image_size=image_size,
num_devices=num_devices,
one_hot=one_hot,
is_train=False)
return [train_builder, val_builder]
def load_checkpoint(checkpoint, ckpt_path):
logger.info('Load from checkpoint is enabled.')
if tf.io.gfile.isdir(ckpt_path):
path_to_checkpoint = tf.train.latest_checkpoint(ckpt_path)
logger.info('Latest checkpoint: {}'.format(path_to_checkpoint))
else:
path_to_checkpoint = ckpt_path if tf.io.gfile.exists(ckpt_path + '.index') else None
logger.info('Provided checkpoint: {}'.format(path_to_checkpoint))
if not path_to_checkpoint:
logger.info('No checkpoint detected.')
return 0
logger.info('Checkpoint file {} found and restoring from checkpoint'
.format(path_to_checkpoint))
status = checkpoint.restore(path_to_checkpoint)
status.expect_partial()
logger.info('Completed loading from checkpoint.')
return None
def resume_from_checkpoint(checkpoint, ckpt_path, steps_per_epoch):
if load_checkpoint(checkpoint, ckpt_path) == 0:
return 0
initial_step = checkpoint.model.optimizer.iterations.numpy()
initial_epoch = initial_step // steps_per_epoch
logger.info('Resuming from epoch %d', initial_epoch)
return initial_epoch
def run(config):
strategy = get_distribution_strategy(config)
if config.metrics_dump is not None:
write_metrics(0, config.metrics_dump)
model_fn, model_params = get_model(config.model,
input_shape=config.get('input_info', {}).get('sample_size', None),
num_classes=config.get('num_classes', 1000),
pretrained=config.get('pretrained', False),
weights=config.get('weights', None))
builders = get_dataset_builders(config, strategy.num_replicas_in_sync)
datasets = [builder.build() for builder in builders]
train_builder, validation_builder = builders
train_dataset, validation_dataset = datasets
nncf_config = config.nncf_config
nncf_config = register_default_init_args(nncf_config=nncf_config,
data_loader=train_dataset,
batch_size=train_builder.global_batch_size)
train_epochs = config.epochs
train_steps = train_builder.steps_per_epoch
validation_steps = validation_builder.steps_per_epoch
resume_training = config.ckpt_path is not None
if is_accuracy_aware_training(config):
with TFOriginalModelManager(model_fn, **model_params) as model:
model.compile(metrics=[tf.keras.metrics.CategoricalAccuracy(name='acc@1')])
results = model.evaluate(
validation_dataset,
steps=validation_steps,
return_dict=True)
uncompressed_model_accuracy = 100 * results['acc@1']
with TFOriginalModelManager(model_fn, **model_params) as model:
with strategy.scope():
compression_ctrl, compress_model = create_compressed_model(model,
nncf_config,
should_init=not resume_training)
compression_callbacks = create_compression_callbacks(compression_ctrl,
log_dir=config.log_dir)
scheduler = build_scheduler(
config=config,
steps_per_epoch=train_steps)
optimizer = build_optimizer(
config=config,
scheduler=scheduler)
loss_obj = tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.1)
compress_model.add_loss(compression_ctrl.loss)
metrics = [
tf.keras.metrics.CategoricalAccuracy(name='acc@1'),
tf.keras.metrics.TopKCategoricalAccuracy(k=5, name='acc@5'),
tfa.metrics.MeanMetricWrapper(loss_obj, name='ce_loss'),
tfa.metrics.MeanMetricWrapper(compression_ctrl.loss, name='cr_loss')
]
compress_model.compile(optimizer=optimizer,
loss=loss_obj,
metrics=metrics,
run_eagerly=config.get('eager_mode', False))
compress_model.summary()
checkpoint = tf.train.Checkpoint(model=compress_model, compression_ctrl=compression_ctrl)
initial_epoch = 0
if resume_training:
initial_epoch = resume_from_checkpoint(checkpoint=checkpoint,
ckpt_path=config.ckpt_path,
steps_per_epoch=train_steps)
callbacks = get_callbacks(
include_tensorboard=True,
track_lr=True,
write_model_weights=False,
initial_step=initial_epoch * train_steps,
model_dir=config.log_dir,
ckpt_dir=config.checkpoint_save_dir,
checkpoint=checkpoint)
callbacks.append(get_progress_bar(
stateful_metrics=['loss'] + [metric.name for metric in metrics]))
callbacks.extend(compression_callbacks)
validation_kwargs = {
'validation_data': validation_dataset,
'validation_steps': validation_steps,
'validation_freq': 1,
}
if 'train' in config.mode:
if is_accuracy_aware_training(config):
logger.info('starting an accuracy-aware training loop...')
result_dict_to_val_metric_fn = lambda results: 100 * results['acc@1']
compress_model.accuracy_aware_fit(train_dataset,
compression_ctrl,
nncf_config=config.nncf_config,
callbacks=callbacks,
initial_epoch=initial_epoch,
steps_per_epoch=train_steps,
tensorboard_writer=config.tb,
log_dir=config.log_dir,
uncompressed_model_accuracy=uncompressed_model_accuracy,
result_dict_to_val_metric_fn=result_dict_to_val_metric_fn,
**validation_kwargs)
else:
logger.info('training...')
compress_model.fit(
train_dataset,
epochs=train_epochs,
steps_per_epoch=train_steps,
initial_epoch=initial_epoch,
callbacks=callbacks,
**validation_kwargs)
logger.info('evaluation...')
statistics = compression_ctrl.statistics()
logger.info(statistics.to_str())
results = compress_model.evaluate(
validation_dataset,
steps=validation_steps,
callbacks=[get_progress_bar(
stateful_metrics=['loss'] + [metric.name for metric in metrics])],
verbose=1)
if config.metrics_dump is not None:
write_metrics(results[1], config.metrics_dump)
if 'export' in config.mode:
save_path, save_format = get_saving_parameters(config)
compression_ctrl.export_model(save_path, save_format)
logger.info('Saved to {}'.format(save_path))
def export(config):
model, model_params = get_model(config.model,
input_shape=config.get('input_info', {}).get('sample_size', None),
num_classes=config.get('num_classes', 1000),
pretrained=config.get('pretrained', False),
weights=config.get('weights', None))
model = model(**model_params)
compression_ctrl, compress_model = create_compressed_model(model,
config.nncf_config,
should_init=False)
metrics = [
tf.keras.metrics.CategoricalAccuracy(name='acc@1'),
tf.keras.metrics.TopKCategoricalAccuracy(k=5, name='acc@5')
]
loss_obj = tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.1)
compress_model.compile(loss=loss_obj,
metrics=metrics)
compress_model.summary()
checkpoint = tf.train.Checkpoint(model=compress_model, compression_ctrl=compression_ctrl)
if config.ckpt_path is not None:
load_checkpoint(checkpoint=checkpoint,
ckpt_path=config.ckpt_path)
save_path, save_format = get_saving_parameters(config)
compression_ctrl.export_model(save_path, save_format)
logger.info('Saved to {}'.format(save_path))
def main(argv):
parser = get_argument_parser()
config = get_config_from_argv(argv, parser)
#config['eager_mode'] = True
serialize_config(config, config.log_dir)
nncf_root = Path(__file__).absolute().parents[3]
create_code_snapshot(nncf_root, osp.join(config.log_dir, 'snapshot.tar.gz'))
if 'train' in config.mode or 'test' in config.mode:
run(config)
elif 'export' in config.mode:
export(config)
if __name__ == '__main__':
physical_devices = tf.config.list_physical_devices('GPU')
for device in physical_devices:
tf.config.experimental.set_memory_growth(device, True)
main(sys.argv[1:])