forked from openvinotoolkit/nncf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
408 lines (330 loc) · 15.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
"""
Copyright (c) 2020 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import sys
import os.path as osp
import tensorflow as tf
import tensorflow_addons as tfa
from pathlib import Path
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
from nncf.config.utils import is_accuracy_aware_training
from nncf.tensorflow.helpers.model_creation import create_compressed_model
from nncf.tensorflow import create_compression_callbacks
from nncf.tensorflow.helpers.model_manager import TFOriginalModelManager
from nncf.tensorflow.initialization import register_default_init_args
from nncf.tensorflow.utils.state import TFCompressionState
from nncf.tensorflow.utils.state import TFCompressionStateLoader
from examples.tensorflow.classification.datasets.builder import DatasetBuilder
from examples.tensorflow.common.argparser import get_common_argument_parser
from examples.tensorflow.common.callbacks import get_callbacks
from examples.tensorflow.common.callbacks import get_progress_bar
from examples.tensorflow.common.distributed import get_distribution_strategy
from examples.tensorflow.common.logger import logger
from examples.tensorflow.common.model_loader import get_model as get_model_old
from examples.tensorflow.common.optimizer import build_optimizer
from examples.tensorflow.common.sample_config import create_sample_config
from examples.tensorflow.common.scheduler import build_scheduler
from examples.tensorflow.common.utils import configure_paths
from examples.tensorflow.common.utils import create_code_snapshot
from examples.tensorflow.common.utils import get_saving_parameters
from examples.tensorflow.common.utils import print_args
from examples.tensorflow.common.utils import serialize_config
from examples.tensorflow.common.utils import serialize_cli_args
from examples.tensorflow.common.utils import write_metrics
from examples.tensorflow.classification.test_models import get_KerasLayer_model
from examples.tensorflow.classification.test_models import get_model
from examples.tensorflow.classification.test_models import ModelType
# KerasLayer with NNCFWrapper 1 epoch
# runs/MobileNetV2_imagenet2012/2021-07-21__14-22-44
# Keras Layer pure 1 epoch
# runs/MobileNetV2_imagenet2012/2021-07-21__14-53-04
def keras_model_to_frozen_graph(model):
input_signature = []
for item in model.inputs:
input_signature.append(tf.TensorSpec(item.shape, item.dtype))
concrete_function = tf.function(model).get_concrete_function(input_signature)
frozen_func = convert_variables_to_constants_v2(concrete_function, lower_control_flow=False)
return frozen_func.graph.as_graph_def(add_shapes=True)
def save_model_as_frozen_graph(model, save_path, as_text=False):
frozen_graph = keras_model_to_frozen_graph(model)
save_dir, name = os.path.split(save_path)
tf.io.write_graph(frozen_graph, save_dir, name, as_text=as_text)
class DummyContextManager:
def __enter__(self):
pass
def __exit__(self, *args):
pass
def get_argument_parser():
parser = get_common_argument_parser(precision=False,
save_checkpoint_freq=False,
print_freq=False)
parser.add_argument(
'--dataset',
help='Dataset to use.',
choices=['imagenet2012', 'cifar100', 'cifar10'],
default=None
)
parser.add_argument('--test-every-n-epochs', default=1, type=int,
help='Enables running validation every given number of epochs')
parser.add_argument(
"--pretrained",
dest="pretrained",
help="Use pretrained models from the tf.keras.applications",
action="store_true",
)
parser.add_argument(
"--model_type",
choices=[ModelType.KerasLayer, ModelType.FuncModel, ModelType.SubClassModel],
default=ModelType.KerasLayer,
help="Type of mobilenetV2 model which should be quantized.")
return parser
def get_config_from_argv(argv, parser):
args = parser.parse_args(args=argv)
config = create_sample_config(args, parser)
configure_paths(config)
return config
def get_dataset_builders(config, num_devices, one_hot=True):
image_size = config.input_info.sample_size[-2]
train_builder = DatasetBuilder(
config,
image_size=image_size,
num_devices=num_devices,
one_hot=one_hot,
is_train=True)
val_builder = DatasetBuilder(
config,
image_size=image_size,
num_devices=num_devices,
one_hot=one_hot,
is_train=False)
return [train_builder, val_builder]
def get_num_classes(dataset):
if 'imagenet2012' in dataset:
num_classes = 1000
elif dataset == 'cifar100':
num_classes = 100
elif dataset == 'cifar10':
num_classes = 10
else:
num_classes = 1000
logger.info('The sample is started with {} classes'.format(num_classes))
return num_classes
def load_checkpoint(checkpoint, ckpt_path):
logger.info('Load from checkpoint is enabled.')
if tf.io.gfile.isdir(ckpt_path):
path_to_checkpoint = tf.train.latest_checkpoint(ckpt_path)
logger.info('Latest checkpoint: {}'.format(path_to_checkpoint))
else:
path_to_checkpoint = ckpt_path if tf.io.gfile.exists(ckpt_path + '.index') else None
logger.info('Provided checkpoint: {}'.format(path_to_checkpoint))
if not path_to_checkpoint:
logger.info('No checkpoint detected.')
return 0
logger.info('Checkpoint file {} found and restoring from checkpoint'
.format(path_to_checkpoint))
status = checkpoint.restore(path_to_checkpoint)
status.expect_partial()
logger.info('Completed loading from checkpoint.')
return None
def resume_from_checkpoint(checkpoint, ckpt_path, steps_per_epoch):
if load_checkpoint(checkpoint, ckpt_path) == 0:
return 0
initial_step = checkpoint.model.optimizer.iterations.numpy()
initial_epoch = initial_step // steps_per_epoch
logger.info('Resuming from epoch %d', initial_epoch)
return initial_epoch
def load_compression_state(ckpt_path: str):
checkpoint = tf.train.Checkpoint(compression_state=TFCompressionStateLoader())
load_checkpoint(checkpoint, ckpt_path)
return checkpoint.compression_state.state
def run(config):
strategy = get_distribution_strategy(config)
if config.metrics_dump is not None:
write_metrics(0, config.metrics_dump)
model_fn, model_params = get_model_old(config.model,
input_shape=config.get('input_info', {}).get('sample_size', None),
num_classes=config.get('num_classes', get_num_classes(config.dataset)),
pretrained=config.get('pretrained', False),
weights=config.get('weights', None))
if config.model_type == ModelType.KerasLayer:
#args = None
args = get_KerasLayer_model()
else:
args = None
builders = get_dataset_builders(config, strategy.num_replicas_in_sync)
datasets = [builder.build() for builder in builders]
train_builder, validation_builder = builders
train_dataset, validation_dataset = datasets
nncf_config = config.nncf_config
nncf_config = register_default_init_args(nncf_config=nncf_config,
data_loader=train_dataset,
batch_size=train_builder.global_batch_size)
train_epochs = config.epochs
train_steps = train_builder.steps_per_epoch
validation_steps = validation_builder.steps_per_epoch
resume_training = config.ckpt_path is not None
if is_accuracy_aware_training(config):
with TFOriginalModelManager(model_fn, **model_params) as model:
model.compile(metrics=[tf.keras.metrics.CategoricalAccuracy(name='acc@1')])
results = model.evaluate(
validation_dataset,
steps=validation_steps,
return_dict=True)
uncompressed_model_accuracy = 100 * results['acc@1']
compression_state = None
if resume_training:
compression_state = load_compression_state(config.ckpt_path)
with DummyContextManager():
with strategy.scope():
if not args:
args = get_model(config.model_type)
from op_insertion import NNCFWrapperCustom
model = tf.keras.Sequential([
tf.keras.layers.Input(shape=(224, 224, 3)),
NNCFWrapperCustom(*args, caliblration_dataset=train_dataset),
#args[0]['layer'],
tf.keras.layers.Activation('softmax')
])
#compression_ctrl, compress_model = create_compressed_model(model, nncf_config, compression_state)
compress_model = model
scheduler = build_scheduler(
config=config,
steps_per_epoch=train_steps)
optimizer = build_optimizer(
config=config,
scheduler=scheduler)
loss_obj = tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.1)
#compress_model.add_loss(compression_ctrl.loss)
metrics = [
tf.keras.metrics.CategoricalAccuracy(name='acc@1'),
tf.keras.metrics.TopKCategoricalAccuracy(k=5, name='acc@5'),
tfa.metrics.MeanMetricWrapper(loss_obj, name='ce_loss'),
#tfa.metrics.MeanMetricWrapper(compression_ctrl.loss, name='cr_loss')
]
compress_model.compile(optimizer=optimizer,
loss=loss_obj,
metrics=metrics,
run_eagerly=config.get('eager_mode', False))
compress_model.summary()
checkpoint = tf.train.Checkpoint(model=compress_model)
initial_epoch = 0
if resume_training:
initial_epoch = resume_from_checkpoint(checkpoint=checkpoint,
ckpt_path=config.ckpt_path,
steps_per_epoch=train_steps)
weights_path = config.get('weights', None)
if weights_path:
compress_model.load_weights(weights_path)
logger.info(f'Weights from {weights_path} were loaded successfully')
callbacks = get_callbacks(
include_tensorboard=True,
track_lr=True,
profile_batch=0,
initial_step=initial_epoch * train_steps,
log_dir=config.log_dir,
ckpt_dir=config.checkpoint_save_dir,
checkpoint=checkpoint)
callbacks.append(get_progress_bar(
stateful_metrics=['loss'] + [metric.name for metric in metrics]))
#callbacks.extend(compression_callbacks)
validation_kwargs = {
'validation_data': validation_dataset,
'validation_steps': validation_steps,
'validation_freq': config.test_every_n_epochs,
}
# BN INITIALIZATION
# Set trainable graph for eval
enable_bn = False
if not resume_training and enable_bn:
print(25*'*')
print('Start BN adaptiation')
print(25*'*')
compress_model.layers[0].training_forced = True
# Update BN statistics
compress_model.evaluate(train_dataset,
steps=1000,
callbacks=[get_progress_bar(
stateful_metrics=['loss'] + [metric.name for metric in metrics])],
verbose=1)
# Reset model
compress_model.layers[0].training_forced = None
compress_model.compile(optimizer=optimizer,
loss=loss_obj,
metrics=metrics,
run_eagerly=config.get('eager_mode', False))
###
if 'train' in config.mode:
logger.info('training...')
compress_model.fit(
train_dataset,
epochs=train_epochs,
steps_per_epoch=train_steps,
initial_epoch=initial_epoch,
callbacks=callbacks,
**validation_kwargs)
logger.info('evaluation...')
results = compress_model.evaluate(
validation_dataset,
steps=validation_steps,
callbacks=[get_progress_bar(
stateful_metrics=['loss'] + [metric.name for metric in metrics])],
verbose=1)
if config.metrics_dump is not None:
write_metrics(results[1], config.metrics_dump)
if 'export' in config.mode:
save_model_as_frozen_graph(compress_model, config.to_frozen_graph)
#save_path, save_format = get_saving_parameters(config)
#compression_ctrl.export_model(save_path, save_format)
#logger.info('Saved to {}'.format(save_path))
def export(config):
model, model_params = get_model(config.model,
input_shape=config.get('input_info', {}).get('sample_size', None),
num_classes=config.get('num_classes', get_num_classes(config.dataset)),
pretrained=config.get('pretrained', False),
weights=config.get('weights', None))
model = model(**model_params)
compression_state = None
if config.ckpt_path:
compression_state = load_compression_state(config.ckpt_path)
compression_ctrl, compress_model = create_compressed_model(model, config.nncf_config, compression_state)
metrics = [
tf.keras.metrics.CategoricalAccuracy(name='acc@1'),
tf.keras.metrics.TopKCategoricalAccuracy(k=5, name='acc@5')
]
loss_obj = tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.1)
compress_model.compile(loss=loss_obj,
metrics=metrics)
compress_model.summary()
checkpoint = tf.train.Checkpoint(model=compress_model,
compression_state=TFCompressionState(compression_ctrl))
if config.ckpt_path is not None:
load_checkpoint(checkpoint=checkpoint,
ckpt_path=config.ckpt_path)
save_path, save_format = get_saving_parameters(config)
compression_ctrl.export_model(save_path, save_format)
logger.info('Saved to {}'.format(save_path))
def main(argv):
parser = get_argument_parser()
config = get_config_from_argv(argv, parser)
#config['eager_mode'] = True
print_args(config)
serialize_config(config.nncf_config, config.log_dir)
serialize_cli_args(parser, argv, config.log_dir)
nncf_root = Path(__file__).absolute().parents[3]
create_code_snapshot(nncf_root, osp.join(config.log_dir, 'snapshot.tar.gz'))
if 'train' in config.mode or 'test' in config.mode:
run(config)
elif 'export' in config.mode:
export(config)
if __name__ == '__main__':
main(sys.argv[1:])