-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar_train_cnn_adv_detector.m
51 lines (34 loc) · 1.24 KB
/
cifar_train_cnn_adv_detector.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
attack_name = "DeepFoolAttack";
%attack_name = "GradientAttack";
%attack_name = "LBFGSAttack";
data_folder = str2mat('cifar_training_data/' + attack_name +'/input_images');
imds = imageDatastore(data_folder,'IncludeSubfolders',true,'LabelSource','foldernames');
numTrainFiles = round(size(imds.Labels,1) * 0.4);
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');
layers = [
imageInputLayer([32 32 1])
convolution2dLayer(3,8,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,16,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding',1)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MaxEpochs',100, ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'ValidationPatience',50, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation)