-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
208 lines (176 loc) · 7.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import pandas as pd
from typing import List, Tuple
from category_encoders import OrdinalEncoder
import torch
from torch import nn, optim
from model.model import BaseModel, MetaNetwork, CtrPredictor
from model.dataset import MetaEmbeddingDataset
import tqdm
import hydra
def get_embedding_size(df: pd.DataFrame, embedding_dim: int) -> List[Tuple[int, int]]:
"""
Get embedding size
Args:
df (pd.DataFrame): Train dataset
embedding_dim (int): Number of embedded dimensions
Returns:
List[Tuple[int, int]]: List of (Unique number of categories, embedding_dim)
"""
# Get embedding layer size
max_idxs = list(df.max())
embedding_sizes = []
for i in max_idxs:
embedding_sizes.append((int(i + 1), embedding_dim))
return embedding_sizes
def train_base_model(X_train: pd.DataFrame, X_valid: pd.Series, y_train: pd.DataFrame, y_valid: pd.Series):
"""
baseモデルを学習
"""
train_dataset = MetaEmbeddingDataset(X_train, y_train)
valid_dataset = MetaEmbeddingDataset(X_valid, y_valid)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=3, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=3, shuffle=True)
# Build model
embedding_sizes = get_embedding_size(X_train, 5)
base_model = BaseModel(embedding_sizes)
# 設定
epochs = 2
loss_fn = nn.BCELoss()
optimizer = optim.SGD(base_model.parameters(), lr=0.001, weight_decay=0.0001)
# 学習開始
min_valid_loss = 100.0
for epoch in range(epochs):
base_model.train()
train_loss = 0.0
valid_loss = 0.0
for i, (inputs, click) in tqdm.tqdm(enumerate(train_loader), total=len(train_loader)):
click = torch.unsqueeze(click, 1)
# Initialize gradient
optimizer.zero_grad()
# caluculate losses
p_ctr = base_model(inputs)
loss = loss_fn(p_ctr, click)
train_loss += loss.item()
# Backpropagation
loss.backward()
# Update parameters
optimizer.step()
# Validation Loop
with torch.no_grad():
base_model.eval()
for inputs, click in valid_loader:
click = torch.unsqueeze(click, 1)
p_ctr = base_model(inputs)
loss = loss_fn(p_ctr, click)
valid_loss += loss.item()
train_loss = train_loss / len(train_loader)
valid_loss = valid_loss / len(valid_loader)
if valid_loss < min_valid_loss:
print('パラメータ保存')
min_valid_loss = valid_loss
torch.save(base_model.state_dict(), '/workspace/storage/model/base_model_params.pth')
def train_meta_embedding(X_train: pd.DataFrame, X_valid: pd.Series, y_train: pd.DataFrame, y_valid: pd.Series,
target_cols: List[str], meta_cols: List[str]):
"""
Meta-Embeddingの学習
"""
# それぞれの特徴量のインデックス取得
target_idxs = [X_train.columns.get_loc(col) for col in target_cols]
meta_idxs = [X_train.columns.get_loc(col) for col in meta_cols]
# データセット作成
train_dataset = MetaEmbeddingDataset(X_train, y_train)
valid_dataset = MetaEmbeddingDataset(X_valid, y_valid)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=3, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=3, shuffle=True)
# モデル構築
embedding_sizes = get_embedding_size(X_train, 5) # 全ての特徴量の埋め込み次元 = 5
base_model = BaseModel(embedding_sizes)
# ベースモデルのベストパラメータロード
base_model.load_state_dict(torch.load('/workspace/storage/model/base_model_params.pth'))
meta_model = MetaNetwork(base_model, target_idxs, meta_idxs)
# 設定
epochs = 2
loss_fn = nn.BCELoss()
optimizer = optim.SGD(base_model.parameters(), lr=0.001, weight_decay=0.0001)
# 学習開始
min_valid_loss = 100.0
for epoch in range(epochs):
base_model.train()
train_loss = 0.0
valid_loss = 0.0
for i, (inputs, click) in tqdm.tqdm(enumerate(train_loader), total=len(train_loader)):
click = torch.unsqueeze(click, 1)
# Initialize gradient
optimizer.zero_grad()
# caluculate losses
p_ctr = meta_model(inputs)
loss = loss_fn(p_ctr, click)
train_loss += loss.item()
# Backpropagation
loss.backward()
# Update parameters
optimizer.step()
# Validation Loop
with torch.no_grad():
base_model.eval()
for inputs, click in valid_loader:
click = torch.unsqueeze(click, 1)
p_ctr = meta_model(inputs)
loss = loss_fn(p_ctr, click)
valid_loss += loss.item()
train_loss = train_loss / len(train_loader)
valid_loss = valid_loss / len(valid_loader)
if valid_loss < min_valid_loss:
print('パラメータ保存')
min_valid_loss = valid_loss
torch.save(meta_model.state_dict(), '/workspace/storage/model/meta_model_params.pth')
def predict(X, X_train, target_cols, meta_cols):
"""
テストデータ推論
"""
# 推論モデル構築
embedding_sizes = get_embedding_size(X_train, 5)
target_idxs = [X_train.columns.get_loc(col) for col in target_cols]
meta_idxs = [X_train.columns.get_loc(col) for col in meta_cols]
# ベースモデル構築
base_model = BaseModel(embedding_sizes)
base_model.load_state_dict(torch.load('/workspace/storage/model/base_model_params.pth'))
# metaモデル構築
meta_model = MetaNetwork(base_model, target_idxs, meta_idxs)
meta_model.load_state_dict(torch.load('/workspace/storage/model/meta_model_params.pth'))
# 推論モデル構築
ctr_predictor = CtrPredictor(meta_model, target_idxs, meta_idxs)
print(X)
print('Meta-Embeddingで推論')
ctr_predictor.eval()
with torch.no_grad():
p = ctr_predictor(X)
print(p)
print('ベースモデルで推論')
base_model.eval()
with torch.no_grad():
p = base_model(X)
print(p)
@hydra.main(config_path='conf', config_name='conf')
def main(conf):
df = pd.read_pickle('/workspace/storage/data/sample.pkl')
# Encode categorical columns
target_cols = list(conf.features.target_features)
meta_cols = list(conf.features.meta_features)
other_cols = list(conf.features.other_features)
supervised_col = conf.features.supervised
categorical_columns = target_cols + meta_cols + other_cols
encoder = OrdinalEncoder(cols=categorical_columns, handle_unknown='impute').fit(df)
df = encoder.transform(df)
# train_test split
X = df.drop(columns=supervised_col)
y = df[supervised_col]
train_base_model(X, X, y, y)
train_meta_embedding(X, X, y, y, target_cols, meta_cols)
# テストデータ予測
df_test = pd.read_pickle('/workspace/storage/data/sample_test.pkl')
df_test = encoder.transform(df_test)
X_test = torch.from_numpy(df_test.drop(columns=supervised_col).values).long()
predict(X_test, X, target_cols, meta_cols)
if __name__ == '__main__':
main()