-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathctrlnet_train.py
173 lines (155 loc) · 6.7 KB
/
ctrlnet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import copy
import os
import os.path as osp
import time
import warnings
warnings.filterwarnings("ignore")
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
from mogen.apis import set_random_seed, train_model
from mogen.datasets import build_dataset
from mogen.models import build_architecture
from mogen.utils import collect_env, get_root_logger
from mogen.models.transformers.controlnet import ControlT2MHalf
from mogen.models.transformers.controlnet_mcm import ControlT2MHalf_MCM
from mogen.datasets.EMAGE_2024.dataloaders.build_vocab import Vocab
def parse_args():
parser = argparse.ArgumentParser(description='Train a model')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument('--resume-from',
help='the checkpoint file to resume from')
parser.add_argument(
'--no-validate',
action='store_true',
help='whether not to evaluate the checkpoint during training')
group_gpus = parser.add_mutually_exclusive_group()
group_gpus.add_argument('--device', help='device used for training')
group_gpus.add_argument('--gpus',
type=int,
help='number of gpus to use '
'(only applicable to non-distributed training)')
group_gpus.add_argument('--gpu-ids',
type=int,
nargs='+',
help='ids of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument('--options',
nargs='+',
action=DictAction,
help='arguments in dict')
parser.add_argument('--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.options is not None:
cfg.merge_from_dict(args.options)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
if args.resume_from is not None:
cfg.resume_from = args.resume_from
if args.gpu_ids is not None:
cfg.gpu_ids = args.gpu_ids
else:
cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
_, world_size = get_dist_info()
cfg.gpu_ids = range(world_size)
# create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
# dump config
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
# init the logger before other steps
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta = dict()
# log env info
env_info_dict = collect_env()
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
dash_line = '-' * 60 + '\n'
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
dash_line)
meta['env_info'] = env_info
# log some basic info
logger.info(f'Distributed training: {distributed}')
logger.info(f'Config:\n{cfg.pretty_text}')
# set random seeds
if args.seed is not None:
logger.info(f'Set random seed to {args.seed}, '
f'deterministic: {args.deterministic}')
set_random_seed(args.seed, deterministic=args.deterministic)
cfg.seed = args.seed
meta['seed'] = args.seed
model = build_architecture(cfg.model)
# no need to init
# model.init_weights()
# load t2M base
load_checkpoint(model, cfg.base_model, map_location='cpu')
# add control-net
logger.info(f'Adding control branch for {cfg.model.model.type}')
logger.info(f'Whether unfreeze the pose encoder and decoder: {cfg.get("joint_embed_unfreeze", True)}')
logger.info(f'Whether unfreeze the pose encoder and decoder locally: {cfg.get("unfreeze_mode", "all")}')
if cfg.model.model.type == 'MCMTransformer':
control_net = ControlT2MHalf_MCM(model.model, copy_blocks_num=cfg.copy_blocks_num, control_cond_feats=cfg.control_cond_feats, cfg=cfg).train()
elif cfg.model.model.type == 'STMoGenTransformer':
control_net = ControlT2MHalf(
model.model,
copy_blocks_num=cfg.copy_blocks_num,
control_cond_feats=cfg.control_cond_feats,
cfg=cfg,
joint_embed_unfreeze=cfg.get('joint_embed_unfreeze', True),
unfreeze_mode=cfg.get("unfreeze_mode", "all")
).train()
else:
raise NotImplementedError
model.model = control_net
datasets = [build_dataset(cfg.data.train)]
if len(cfg.workflow) == 2:
val_dataset = copy.deepcopy(cfg.data.val)
val_dataset.pipeline = cfg.data.train.pipeline
datasets.append(build_dataset(val_dataset))
logger.info(f"Training Dataset: {len(datasets[0])}")
# add an attribute for visualization convenience
train_model(model,
datasets,
cfg,
distributed=distributed,
validate=(not args.no_validate),
timestamp=timestamp,
device='cpu' if args.device == 'cpu' else 'cuda',
meta=meta)
if __name__ == '__main__':
main()