Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

运行DGBO_GC-batch #1

Open
ghost opened this issue Jul 6, 2023 · 1 comment
Open

运行DGBO_GC-batch #1

ghost opened this issue Jul 6, 2023 · 1 comment

Comments

@ghost
Copy link

ghost commented Jul 6, 2023

崔老师您好,我在学习您的DGBO_GC方法,我采用的overfit_type是默认的opt。目前程序运行初始化参数,代码如下:
def initialization(data,n,info):
print ("-----------initialization-----------")
xlist=np.linspace(0,len(data.candidates)-1,len(data.candidates))
xlist = xlist.tolist()
xlistinit=[]
if len(data.candidates)%n==0:
delta=len(data.candidates)/n
else:
delta=len(data.candidates)/n+1
for i in range(n):
xlistinit.append(random.sample(xlist[i*int(delta):min((i+1)*int(delta),len(data.candidates))],1)[0])
xlist=xlistinit
xlist=np.array(xlist,dtype=np.integer)
for i in range(n):
print ("initialization [%s] ..."%(i))
y=evaluate(info,data.candidates[xlist[i]])
info.add(xlist[i],y)
if info.overfit_type=="opt":
print ("init the setting of params on overfitting...")
bo = BayesianOptimization(initsettingCV,{'dropout_': (0,1), 'weight_decay_': (1e-5,1e-1)},random_state=rng)
bo.maximize(init_points=21, n_iter=30, acq='ei')
print (bo.res['max'])
在上述代码中,运行到 bo = BayesianOptimization(initsettingCV,{'dropout_': (0,1), 'weight_decay_': (1e-5,1e-1)},random_state=rng)后进入了5折交叉验证,但是一直循环交叉验证的过程,结果如下:
| 2 | -1.044 | 0.9985 | 0.01969 |
[cv 1] [ 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] [0 1 2 3]
add a model
[cv 2] [ 0 1 2 3 8 9 10 11 12 13 14 15 16 17 18 19] [4 5 6 7]
add a model
[cv 3] [ 0 1 2 3 4 5 6 7 12 13 14 15 16 17 18 19] [ 8 9 10 11]
add a model
[cv 4] [ 0 1 2 3 4 5 6 7 8 9 10 11 16 17 18 19] [12 13 14 15]
add a model
[cv 5] [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] [16 17 18 19]
add a model
transition_matrix: (16, 257)
train: features_comb shape is : (257, 68)
train: constructing adj...
Build DGCN_Comb2...
Architecture: { gcn[1 2 3 4 5]->concat(0.8)->dnn[1 2 3 4 5] }
heur: dropout=0.16990029785933825, weight_decay=0.047577751206738225
Start to train network.
Epoch: 0001 train_loss= 45.74941 time= 1.25621s total_time= 1.25621s
Epoch: 0101 train_loss= 33.50009 time= 0.00600s total_time= 1.88035s
Train net Finished!
acc= 1.3567712
transition_matrix: (16, 257)
train: features_comb shape is : (257, 68)
train: constructing adj...
Build DGCN_Comb2...
Architecture: { gcn[1 2 3 4 5]->concat(0.8)->dnn[1 2 3 4 5] }
heur: dropout=0.16990029785933825, weight_decay=0.047577751206738225
Start to train network.
Epoch: 0001 train_loss= 53.56653 time= 1.30929s total_time= 1.30929s
Epoch: 0101 train_loss= 33.76947 time= 0.00700s total_time= 1.95644s
Train net Finished!
acc= 1.1174575
transition_matrix: (16, 257)
train: features_comb shape is : (257, 68)
train: constructing adj...
Build DGCN_Comb2...
Architecture: { gcn[1 2 3 4 5]->concat(0.8)->dnn[1 2 3 4 5] }
heur: dropout=0.16990029785933825, weight_decay=0.047577751206738225
Start to train network.
Epoch: 0001 train_loss= 51.28548 time= 1.23025s total_time= 1.23025s
Epoch: 0101 train_loss= 33.82351 time= 0.00700s total_time= 1.86339s
Train net Finished!
acc= 0.5193358
transition_matrix: (16, 257)
train: features_comb shape is : (257, 68)
train: constructing adj...
Build DGCN_Comb2...
Architecture: { gcn[1 2 3 4 5]->concat(0.8)->dnn[1 2 3 4 5] }
heur: dropout=0.16990029785933825, weight_decay=0.047577751206738225
Start to train network.
Epoch: 0001 train_loss= 45.57104 time= 1.31298s total_time= 1.31298s
Epoch: 0101 train_loss= 32.98197 time= 0.00700s total_time= 1.97312s
Train net Finished!
acc= 1.7546887
transition_matrix: (16, 257)
train: features_comb shape is : (257, 68)
train: constructing adj...
Build DGCN_Comb2...
Architecture: { gcn[1 2 3 4 5]->concat(0.8)->dnn[1 2 3 4 5] }
heur: dropout=0.16990029785933825, weight_decay=0.047577751206738225
Start to train network.
Epoch: 0001 train_loss= 47.50560 time= 1.25738s total_time= 1.25738s
Epoch: 0101 train_loss= 33.11481 time= 0.00600s total_time= 1.89652s
Train net Finished!
acc= 1.9915786
上述过程一直循环,无法运行到 bo.maximize(init_points=21, n_iter=30, acq='ei')这一步。不知道问题出现在哪里。
另外发现当不debug,直接运行整个项目,当迭代次数为51之后会跳到bo.maximize(init_points=21, n_iter=30, acq='ei')这一步,但是会报错。错误如下:Traceback (most recent call last):
File "E:/model/Scalable-and-Parallel-DGBO-master/Scalable-and-Parallel-DGBO-master/DGBO_GC-batch/DGBO.py", line 338, in
BO_process(data,params,info)
File "E:/model/Scalable-and-Parallel-DGBO-master/Scalable-and-Parallel-DGBO-master/DGBO_GC-batch/DGBO.py", line 210, in BO_process
initialization(data,params.initn,info)
File "E:/model/Scalable-and-Parallel-DGBO-master/Scalable-and-Parallel-DGBO-master/DGBO_GC-batch/DGBO.py", line 135, in initialization
print (bo.res['max'])
TypeError: list indices must be integers or slices, not str。
这个问题困扰我很久了,一直不知道原因,希望您百忙之中可以帮忙给解答一下。我将感激不尽,谢谢您~

@csjtx1021
Copy link
Owner

Hi,

Can you confirm that the installed bayesian-optimization package is version 1.0.0?

Best

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant