forked from wzmsltw/BSN-boundary-sensitive-network.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar.py
816 lines (730 loc) · 29.9 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
from collections import namedtuple
import os
import sys
import cv2
import time
import math
import pickle
import random
import argparse
import datetime
import numpy as np
from glob import glob
from PIL import Image
from comet_ml import Experiment as CometExperiment, OfflineExperiment
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import run_cifar_jobs
import opts
from models import load_hparams_from_tags_csv
from representations.amdim.model import Model as AMDIMModel
from representations.amdim.representation import THUMOS_OUTPUT_DIM as AMDIM_OUTPUT_DIM
from representations.ccc.model import Model as CCCModel
# from representations.ccc.representation import ACTIVITYNET_OUTPUT_DIM as CCC_OUTPUT_DIM
CCC_OUTPUT_DIM = 8192 # 184832
from representations.corrflow.model import Model as CORRFLOWModel
CORRFLOW_OUTPUT_DIM = 64 * 8 * 8
RESNET_OUTPUT_DIM = 2048
parser = argparse.ArgumentParser()
parser.add_argument("--mode", default="run", help="run, array, or job")
parser.add_argument("--do_nonlinear", action="store_true", default=False)
parser.add_argument(
'--time',
type=float,
default=10,
help='the number of hours',
)
parser.add_argument("--not_pretrain", action="store_true", default=False)
parser.add_argument('--local_comet_dir',
type=str,
default=None,
help='local dir to process comet locally only. '
'primarily for fb, will stop remote calls.')
parser.add_argument('--name',
type=str,
help='the identifying name of this experiment.',
default=None)
parser.add_argument('--counter',
type=int,
help='the integer counter of this experiment. '
'defaults to None because Cinjon is likely the '
'only one who is going to use it.')
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--epochs", type=int, default=200)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--lr", type=float, default=0.003)
parser.add_argument("--lr_interval", type=int, default=20)
parser.add_argument("--min_lr", type=float, default=0.0003)
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--optimizer", type=str, default="Adam")
parser.add_argument("--num_workers", type=int, default=12)
parser.add_argument(
"--model", type=str, help="amdim, ccc, corrflow or resnet")
parser.add_argument(
"--num_classes",
type=int,
help="10 for CIFAR10 or 100 for CIFAR100")
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
#######################################################
# AMDIM Image loading
#######################################################
def amdim_img_loading_func(img, do_augment=False):
img = Image.fromarray(img)
post_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
if do_augment:
flip_lr = transforms.RandomHorizontalFlip(p=0.5)
rand_crop = transforms.RandomResizedCrop(
128, scale=(0.3, 1.0), ratio=(0.7, 1.4),
interpolation=3)
col_jitter = transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8)
rnd_gray = transforms.RandomGrayscale(p=0.25)
transform = transforms.Compose([
flip_lr, rand_crop, col_jitter, rnd_gray, post_transform
])
else:
transform = transforms.Compose([
# transforms.Resize(146, interpolation=3),
# transforms.CenterCrop(128),
transforms.Resize(128, interpolation=3),
post_transform
])
img = transform(img)
return img
#######################################################
# CCC Image loading
#######################################################
def to_numpy(tensor):
if torch.is_tensor(tensor):
return tensor.cpu().numpy()
elif type(tensor).__module__ != 'numpy':
raise ValueError("Cannot convert {} to numpy array"
.format(type(tensor)))
return tensor
def to_torch(ndarray):
if type(ndarray).__module__ == 'numpy':
return torch.from_numpy(ndarray)
elif not torch.is_tensor(ndarray):
raise ValueError("Cannot convert {} to torch tensor"
.format(type(ndarray)))
return ndarray
def im_to_numpy(img):
img = to_numpy(img)
img = np.transpose(img, (1, 2, 0)) # H*W*C
return img
def im_to_torch(img):
img = np.transpose(img, (2, 0, 1)) # C*H*W
img = to_torch(img).float()
return img
def color_normalize(x, mean, std):
if x.size(0) == 1:
x = x.repeat(3, 1, 1)
for t, m, s in zip(x, mean, std):
t.sub_(m)
t.div_(s)
return x
def fliplr(x):
if x.ndim == 3:
x = np.transpose(np.fliplr(np.transpose(x, (0, 2, 1))), (0, 2, 1))
elif x.ndim == 4:
for i in range(x.shape[0]):
x[i] = np.transpose(np.fliplr(np.transpose(x[i], (0, 2, 1))), (0, 2, 1))
return x.astype(float)
def resize(img, owidth, oheight):
img = im_to_numpy(img)
img = cv2.resize( img, (owidth, oheight) )
img = im_to_torch(img)
return img
def ccc_img_loading_func(img, do_augment=False):
imgSize = 32 # 256
img = img.astype(np.float32) / 255.0
img = im_to_torch(img.copy())
ht, wd = img.size(1), img.size(2)
if ht <= wd:
ratio = float(wd) / float(ht)
# width, height
img = resize(img, int(imgSize * ratio), imgSize)
else:
ratio = float(ht) / float(wd)
# width, height
img = resize(img, imgSize, int(imgSize * ratio))
if do_augment:
if random.random() > 0.5:
img = torch.from_numpy(fliplr(img.numpy())).float()
mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
img = color_normalize(img, mean, std)
return img
#######################################################
# CorrFlow Image loading
#######################################################
def rgb_preprocess_jitter(image):
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = (image * 255).astype(np.uint8)
image = Image.fromarray(image)
# image = transforms.Resize(224)(image)
image = transforms.ColorJitter(0.1,0.1,0.1,0.1)(image)
image = transforms.ToTensor()(image)
return image
def corrflow_img_loading_func(img, do_augment=False):
# This should output RGB.
img = img / 255.
img = img.astype(np.float32)
M = 8
h, w = img.shape[0], img.shape[1]
if w % M != 0: img = img[:, :-(w % M)]
if h % M != 0: img = img[:-(h % M),]
r = np.random.random()
# The random was originally 0.1.
if not do_augment or np.random.random() > 0.1:
return transforms.ToTensor()(img)
# img = Image.fromarray(img)
# img = transforms.Resize(224)(img)
# img = transforms.ToTensor()(img)
return img
return rgb_preprocess_jitter(img)
#######################################################
# Resnet Image loading
#######################################################
def resnet_img_loading_func(img, do_augment=False):
img = Image.fromarray(img)
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# normalize = transforms.Normalize(
# mean=[0.4914, 0.4822, 0.4465], std=[0.247, 0.243, 0.261])
if do_augment:
transforms_ = transforms.Compose([
transforms.RandomResizedCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
else:
transforms_ = transforms.Compose([
# transforms.Resize(256),
# transforms.CenterCrop(224),
transforms.Resize(32),
transforms.ToTensor(),
normalize,
])
return transforms_(img)
#######################################################
# CIFAR Dataset
#######################################################
def unpickle(file):
with open(file, "rb") as fo:
dic = pickle.load(fo, encoding='bytes')
return dic
class CIFAR_dataset(data.Dataset):
def __init__(self, paths, num_classes, model_name, do_augment):
self.paths = paths
self.num_classes = num_classes
self.do_augment = do_augment
self.model_name = model_name
self.imgs = []
self.lbls = []
for path in self.paths:
data_dic = unpickle(path)
self.imgs.append(data_dic[b"data"])
if self.num_classes == 10:
self.lbls.append(data_dic[b"labels"])
if self.num_classes == 100:
self.lbls.append(data_dic[b"fine_labels"])
self.imgs = np.concatenate(self.imgs, 0)
self.imgs = np.reshape(self.imgs, (-1, 3, 32, 32))
self.imgs = np.transpose(self.imgs, (0, 2, 3, 1))
self.lbls = np.concatenate(self.lbls, 0)
assert len(self.imgs) == len(self.lbls), "imgs and lbls not match"
def __getitem__(self, index):
if self.model_name == "amdim":
img = amdim_img_loading_func(
self.imgs[index], do_augment=self.do_augment)
elif self.model_name == "ccc":
img = ccc_img_loading_func(
self.imgs[index], do_augment=self.do_augment)
elif self.model_name == "corrflow":
img = corrflow_img_loading_func(
self.imgs[index], do_augment=self.do_augment)
elif self.model_name == "resnet":
img = resnet_img_loading_func(
self.imgs[index], do_augment=self.do_augment)
lbl = torch.LongTensor([self.lbls[index]])
return img, lbl
def __len__(self):
return len(self.imgs)
#######################################################
# Linear model
#######################################################
class LinearModel(nn.Module):
def __init__(self, in_channels, num_classes):
super(LinearModel, self).__init__()
self.in_channels = in_channels
self.num_classes = num_classes
self.linear = nn.Linear(self.in_channels, self.num_classes)
self.linear.weight.data.normal_(0, 0.01)
self.linear.bias.data.zero_()
# self.fc1 = nn.Linear(self.in_channels, 512)
# self.fc2 = nn.Linear(512, self.num_classes)
# self.relu = nn.ReLU(inplace=True)
# self.fc1.weight.data.normal_(0, 0.01)
# self.fc1.bias.data.zero_()
# self.fc2.weight.data.normal_(0, 0.01)
# self.fc2.bias.data.zero_()
def forward(self, x):
x = x.view(x.size(0), -1)
x = self.linear(x)
# x = self.relu(self.fc1(x))
# x = self.fc2(x)
return x
class NonLinearModel(nn.Module):
def __init__(self, in_channels, num_classes, num_layers=3):
super(LinearModel, self).__init__()
self.in_channels = in_channels
self.num_classes = num_classes
self.num_layers = num_layers
self.nonlinear = nn.Sequential([
nn.Sequential([
nn.Linear(self.in_channels, self.in_channels),
nn.ReLU()
])
for _ in num_layers
])
self.linear = nn.Linear(self.in_channels, self.num_classes)
self.linear.weight.data.normal_(0, 0.01)
self.linear.bias.data.zero_()
# self.fc1 = nn.Linear(self.in_channels, 512)
# self.fc2 = nn.Linear(512, self.num_classes)
# self.relu = nn.ReLU(inplace=True)
# self.fc1.weight.data.normal_(0, 0.01)
# self.fc1.bias.data.zero_()
# self.fc2.weight.data.normal_(0, 0.01)
# self.fc2.bias.data.zero_()
def forward(self, x):
x = x.view(x.size(0), -1)
x = self.nonlinear(x)
x = self.linear(x)
# x = self.relu(self.fc1(x))
# x = self.fc2(x)
return x
#######################################################
# Main
#######################################################
def main(args):
print('Pretrain? ', not args.not_pretrain)
print(args.model)
start_time = time.time()
if opt['local_comet_dir']:
comet_exp = OfflineExperiment(
api_key="hIXq6lDzWzz24zgKv7RYz6blo",
project_name="selfcifar",
workspace="cinjon",
auto_metric_logging=True,
auto_output_logging=None,
auto_param_logging=False,
offline_directory=opt['local_comet_dir'])
else:
comet_exp = CometExperiment(
api_key="hIXq6lDzWzz24zgKv7RYz6blo",
project_name="selfcifar",
workspace="cinjon",
auto_metric_logging=True,
auto_output_logging=None,
auto_param_logging=False)
comet_exp.log_parameters(vars(args))
comet_exp.set_name(args.name)
# Build model
# path = "/misc/kcgscratch1/ChoGroup/resnick/spaceofmotion/zeping/bsn"
linear_cls = NonLinearModel if args.do_nonlinear else LinearModel
if args.model == "amdim":
hparams = load_hparams_from_tags_csv('/checkpoint/cinjon/amdim/meta_tags.csv')
# hparams = load_hparams_from_tags_csv(os.path.join(path, "meta_tags.csv"))
model = AMDIMModel(hparams)
if not args.not_pretrain:
# _path = os.path.join(path, "_ckpt_epoch_434.ckpt")
_path = '/checkpoint/cinjon/amdim/_ckpt_epoch_434.ckpt'
model.load_state_dict(torch.load(_path)["state_dict"])
else:
print("AMDIM not loading checkpoint") # Debug
linear_model = linear_cls(AMDIM_OUTPUT_DIM, args.num_classes)
elif args.model == "ccc":
model = CCCModel(None)
if not args.not_pretrain:
# _path = os.path.join(path, "TimeCycleCkpt14.pth")
_path = '/checkpoint/cinjon/spaceofmotion/bsn/TimeCycleCkpt14.pth'
checkpoint = torch.load(_path)
base_dict = {
'.'.join(k.split('.')[1:]): v
for k, v in list(checkpoint['state_dict'].items())}
model.load_state_dict(base_dict)
else:
print("CCC not loading checkpoint") # Debug
linear_model = linaer_cls(CCC_OUTPUT_DIM, args.num_classes) #.to(device)
elif args.model == "corrflow":
model = CORRFLOWModel(None)
if not args.not_pretrain:
_path = '/checkpoint/cinjon/spaceofmotion/supercons/corrflow.kineticsmodel.pth'
# _path = os.path.join(path, "corrflow.kineticsmodel.pth")
checkpoint = torch.load(_path)
base_dict = {
'.'.join(k.split('.')[1:]): v
for k, v in list(checkpoint['state_dict'].items())}
model.load_state_dict(base_dict)
else:
print("CorrFlow not loading checkpoing") # Debug
linear_model = linear_cls(CORRFLOW_OUTPUT_DIM, args.num_classes)
elif args.model == "resnet":
if not args.not_pretrain:
resnet = torchvision.models.resnet50(pretrained=True)
else:
resnet = torchvision.models.resnet50(pretrained=False)
print("ResNet not loading checkpoint") # Debug
modules = list(resnet.children())[:-1]
model = nn.Sequential(*modules)
linear_model = linear_cls(RESNET_OUTPUT_DIM, args.num_classes)
else:
raise Exception("model type has to be amdim, ccc, corrflow or resnet")
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model).to(device)
linear_model = nn.DataParallel(linear_model).to(device)
else:
model = model.to(device)
linear_model = linear_model.to(device)
# model = model.to(device)
# linear_model = linear_model.to(device)
# Freeze model
for p in model.parameters():
p.requires_grad = False
model.eval()
if args.optimizer == "Adam":
optimizer = optim.Adam(
linear_model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay)
print("Optimizer: Adam with weight decay: {}".format(
args.weight_decay))
elif args.optimizer == "SGD":
optimizer = optim.SGD(
linear_model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
print("Optimizer: SGD with weight decay: {} momentum: {}".format(
args.weight_decay, args.momentum))
else:
raise Exception("optimizer should be Adam or SGD")
optimizer.zero_grad()
# Set up log dir
now = datetime.datetime.now()
log_dir = '/checkpoint/cinjon/spaceofmotion/bsn/cifar-%d-weights/%s/%s' % (args.num_classes, args.model, args.name)
# log_dir = "{}{:%Y%m%dT%H%M}".format(args.model, now)
# log_dir = os.path.join("weights", log_dir)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
print("Saving to {}".format(log_dir))
batch_size = args.batch_size * torch.cuda.device_count()
# CIFAR-10
if args.num_classes == 10:
data_path = ("/private/home/cinjon/cifar-data/cifar-10-batches-py")
_train_dataset = CIFAR_dataset(
glob(os.path.join(data_path, "data*")),
args.num_classes,
args.model,
True)
# _train_acc_dataset = CIFAR_dataset(
# glob(os.path.join(data_path, "data*")),
# args.num_classes,
# args.model,
# False)
train_dataloader = data.DataLoader(
_train_dataset, shuffle=True, batch_size=batch_size, num_workers=args.num_workers)
# train_split = int(len(_train_dataset) * 0.8)
# train_dev_split = int(len(_train_dataset) - train_split)
# train_dataset, train_dev_dataset = data.random_split(
# _train_dataset, [train_split, train_dev_split])
# train_acc_dataloader = data.DataLoader(
# train_dataset, shuffle=False, batch_size=batch_size, num_workers=args.num_workers)
# train_dev_acc_dataloader = data.DataLoader(
# train_dev_dataset, shuffle=False, batch_size=batch_size, num_workers=args.num_workers)
# train_dataset = data.Subset(_train_dataset, list(range(train_split)))
# train_dataloader = data.DataLoader(
# train_dataset, shuffle=True, batch_size=batch_size, num_workers=args.num_workers)
# train_acc_dataset = data.Subset(
# _train_acc_dataset, list(range(train_split)))
# train_acc_dataloader = data.DataLoader(
# train_acc_dataset, shuffle=False, batch_size=batch_size, num_workers=args.num_workers)
# train_dev_acc_dataset = data.Subset(
# _train_acc_dataset, list(range(train_split, len(_train_acc_dataset))))
# train_dev_acc_dataloader = data.DataLoader(
# train_dev_acc_dataset, shuffle=False, batch_size=batch_size, num_workers=args.num_workers)
_val_dataset = CIFAR_dataset(
[os.path.join(data_path, "test_batch")],
args.num_classes,
args.model,
False)
val_dataloader = data.DataLoader(
_val_dataset, shuffle=False, batch_size=batch_size, num_workers=args.num_workers)
# val_split = int(len(_val_dataset) * 0.8)
# val_dev_split = int(len(_val_dataset) - val_split)
# val_dataset, val_dev_dataset = data.random_split(
# _val_dataset, [val_split, val_dev_split])
# val_dataloader = data.DataLoader(
# val_dataset, shuffle=False, batch_size=batch_size, num_workers=args.num_workers)
# val_dev_dataloader = data.DataLoader(
# val_dev_dataset, shuffle=False, batch_size=batch_size, num_workers=args.num_workers)
# CIFAR-100
elif args.num_classes == 100:
data_path = ("/private/home/cinjon/cifar-data/cifar-100-python")
_train_dataset = CIFAR_dataset(
[os.path.join(data_path, "train")],
args.num_classes,
args.model,
True)
train_dataloader = data.DataLoader(
_train_dataset, shuffle=True, batch_size=batch_size)
_val_dataset = CIFAR_dataset(
[os.path.join(data_path, "test")],
args.num_classes,
args.model,
False)
val_dataloader = data.DataLoader(
_val_dataset, shuffle=False, batch_size=batch_size)
else:
raise Exception("num_classes should be 10 or 100")
best_acc = 0.0
best_epoch = 0
# Training
for epoch in range(1, args.epochs+1):
current_lr = max(3e-4, args.lr *\
math.pow(0.5, math.floor(epoch / args.lr_interval)))
linear_model.train()
if args.optimizer == "Adam":
optimizer = optim.Adam(
linear_model.parameters(),
lr=current_lr,
weight_decay=args.weight_decay)
elif args.optimizer == "SGD":
optimizer = optim.SGD(
linear_model.parameters(),
lr=current_lr,
momentum=args.momentum,
weight_decay=args.weight_decay,)
####################################################
# Train
t = time.time()
train_acc = 0
train_loss_sum = 0.0
for iter, input in enumerate(train_dataloader):
if time.time() - start_time > args.time*3600 - 300 and comet_exp is not None:
comet_exp.end()
sys.exit(-1)
imgs = input[0].to(device)
if args.model != "resnet":
imgs = imgs.unsqueeze(1)
lbls = input[1].flatten().to(device)
# output = model(imgs)
# output = linear_model(output)
output = linear_model(model(imgs))
loss = F.cross_entropy(output, lbls)
train_loss_sum += float(loss.data)
train_acc += int(sum(torch.argmax(output, dim=1) == lbls))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# log_text = "train epoch {}/{}\titer {}/{} loss:{} {:.3f}s/iter"
if iter % 1500 == 0:
log_text = "train epoch {}/{}\titer {}/{} loss:{}"
print(log_text.format(
epoch,
args.epochs,
iter+1,
len(train_dataloader),
loss.data,
time.time() - t),
flush=False)
t = time.time()
train_acc /= len(_train_dataset)
train_loss_sum /= len(train_dataloader)
with comet_exp.train():
comet_exp.log_metrics({'acc': train_acc, 'loss': train_loss_sum}, step=(epoch + 1) * len(train_dataloader), epoch=epoch + 1)
print("train acc epoch {}/{} loss:{} train_acc:{}".format(
epoch, args.epochs, train_loss_sum, train_acc), flush=True)
#######################################################################
# Train acc
# linear_model.eval()
# train_acc = 0
# train_loss_sum = 0.0
# for iter, input in enumerate(train_acc_dataloader):
# imgs = input[0].to(device)
# if args.model != "resnet":
# imgs = imgs.unsqueeze(1)
# lbls = input[1].flatten().to(device)
#
# # output = model(imgs)
# # output = linear_model(output)
# output = linear_model(model(imgs))
# loss = F.cross_entropy(output, lbls)
# train_loss_sum += float(loss.data)
# train_acc += int(sum(torch.argmax(output, dim=1) == lbls))
#
# print("train acc epoch {}/{}\titer {}/{} loss:{} {:.3f}s/iter".format(
# epoch,
# args.epochs,
# iter+1,
# len(train_acc_dataloader),
# loss.data,
# time.time() - t),
# flush=True)
# t = time.time()
#
#
# train_acc /= len(train_acc_dataset)
# train_loss_sum /= len(train_acc_dataloader)
# print("train acc epoch {}/{} loss:{} train_acc:{}".format(
# epoch, args.epochs, train_loss_sum, train_acc), flush=True)
#######################################################################
# Train dev acc
# # linear_model.eval()
# train_dev_acc = 0
# train_dev_loss_sum = 0.0
# for iter, input in enumerate(train_dev_acc_dataloader):
# imgs = input[0].to(device)
# if args.model != "resnet":
# imgs = imgs.unsqueeze(1)
# lbls = input[1].flatten().to(device)
#
# output = model(imgs)
# output = linear_model(output)
# # output = linear_model(model(imgs))
# loss = F.cross_entropy(output, lbls)
# train_dev_loss_sum += float(loss.data)
# train_dev_acc += int(sum(torch.argmax(output, dim=1) == lbls))
#
# print("train dev acc epoch {}/{}\titer {}/{} loss:{} {:.3f}s/iter".format(
# epoch,
# args.epochs,
# iter+1,
# len(train_dev_acc_dataloader),
# loss.data,
# time.time() - t),
# flush=True)
# t = time.time()
#
# train_dev_acc /= len(train_dev_acc_dataset)
# train_dev_loss_sum /= len(train_dev_acc_dataloader)
# print("train dev epoch {}/{} loss:{} train_dev_acc:{}".format(
# epoch, args.epochs, train_dev_loss_sum, train_dev_acc), flush=True)
#######################################################################
# Val dev
# # linear_model.eval()
# val_dev_acc = 0
# val_dev_loss_sum = 0.0
# for iter, input in enumerate(val_dev_dataloader):
# imgs = input[0].to(device)
# if args.model != "resnet":
# imgs = imgs.unsqueeze(1)
# lbls = input[1].flatten().to(device)
#
# output = model(imgs)
# output = linear_model(output)
# loss = F.cross_entropy(output, lbls)
# val_dev_loss_sum += float(loss.data)
# val_dev_acc += int(sum(torch.argmax(output, dim=1) == lbls))
#
# print("val dev epoch {}/{} iter {}/{} loss:{} {:.3f}s/iter".format(
# epoch,
# args.epochs,
# iter+1,
# len(val_dev_dataloader),
# loss.data,
# time.time() - t),
# flush=True)
# t = time.time()
#
# val_dev_acc /= len(val_dev_dataset)
# val_dev_loss_sum /= len(val_dev_dataloader)
# print("val dev epoch {}/{} loss:{} val_dev_acc:{}".format(
# epoch, args.epochs, val_dev_loss_sum, val_dev_acc), flush=True)
#######################################################################
# Val
linear_model.eval()
val_acc = 0
val_loss_sum = 0.0
for iter, input in enumerate(val_dataloader):
if time.time() - start_time > args.time*3600 - 300 and comet_exp is not None:
comet_exp.end()
sys.exit(-1)
imgs = input[0].to(device)
if args.model != "resnet":
imgs = imgs.unsqueeze(1)
lbls = input[1].flatten().to(device)
output = model(imgs)
output = linear_model(output)
loss = F.cross_entropy(output, lbls)
val_loss_sum += float(loss.data)
val_acc += int(sum(torch.argmax(output, dim=1) == lbls))
# log_text = "val epoch {}/{} iter {}/{} loss:{} {:.3f}s/iter"
if iter % 1500 == 0:
log_text = "val epoch {}/{} iter {}/{} loss:{}"
print(log_text.format(
epoch,
args.epochs,
iter+1,
len(val_dataloader),
loss.data,
time.time() - t),
flush=False)
t = time.time()
val_acc /= len(_val_dataset)
val_loss_sum /= len(val_dataloader)
print("val epoch {}/{} loss:{} val_acc:{}".format(
epoch, args.epochs, val_loss_sum, val_acc))
with comet_exp.test():
comet_exp.log_metrics({'acc': val_acc, 'loss': val_loss_sum}, step=(epoch + 1) * len(train_dataloader), epoch=epoch + 1)
if val_acc > best_acc:
best_acc = val_acc
best_epoch = epoch
linear_save_path = os.path.join(log_dir, "{}.linear.pth".format(epoch))
model_save_path = os.path.join(log_dir, "{}.model.pth".format(epoch))
torch.save(linear_model.state_dict(), linear_save_path)
torch.save(model.state_dict(), model_save_path)
# Check bias and variance
print("Epoch {} lr {} total: train_loss:{} train_acc:{} val_loss:{} val_acc:{}".format(
epoch, current_lr, train_loss_sum, train_acc, val_loss_sum, val_acc), flush=True)
# print("Epoch {} lr {} total: train_acc:{} train_dev_acc:{} val_dev_acc:{} val_acc:{}".format(
# epoch, current_lr, train_acc, train_dev_acc, val_dev_acc, val_acc), flush=True)
print("The best epoch: {} acc: {}".format(best_epoch, best_acc))
class Struct:
def __init__(self, **entries):
self.__dict__.update(entries)
if __name__ == "__main__":
if args.mode == "run":
main(args)
elif args.mode == "array":
jobid = int(os.getenv('SLURM_ARRAY_TASK_ID'))
if not jobid:
raise
counter, job = run_cifar_jobs.do(find_counter=jobid, do_job=False)
opt = vars(args)
print(counter, job, '\n', opt)
opt.update(job)
print(opt)
args = Struct(**opt)
main(args)