-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
215 lines (178 loc) · 6.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
Implementation for "Joint Neural Collaborative Filtering for Recommender Systems"
ACM Transactions on Information Systems, Vol. 37, No. 4, Article 39. (August 2019)
https://dl.acm.org/doi/10.1145/3343117
https://arxiv.org/pdf/1907.03459.pdf
by Sangjin Cheon (cheon.research @ gmail.com)
University of Seoul, Korea
"""
import torch
import torch.optim as optim
import numpy as np
import time
from model import JNCF
import data_utils
from functions import *
import os
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
parser = argparse.ArgumentParser()
parser.add_argument("--data",
type=str,
default="ml1m",
help="dataset name")
parser.add_argument("--lr",
type=float,
default=0.001,
help="learning rate")
parser.add_argument("--batch_size",
type=int,
default=256,
help="batch size for training")
parser.add_argument("--epochs",
type=int,
default=40,
help="training epoches")
parser.add_argument("--top_k",
type=int,
default=10,
help="compute metrics@top_k")
parser.add_argument("--factor_num",
type=int,
default=64,
help="predictive factors numbers in the model")
parser.add_argument("--DF_layers",
type=str,
default="[512, 256]",
help="number of layers in Deep Feature modeling")
parser.add_argument("--DI_layers",
type=str,
default="[256, 128, 64]",
help="number of layers in Deep Interaction modeling")
parser.add_argument("--alpha",
type=float,
default=0.9,
help="number of layers in Deep Interaction modeling")
parser.add_argument("--n_neg",
type=int,
default=5,
help="sample negative items for training")
parser.add_argument("--test_num_ng",
type=int,
default=99,
help="sample part of negative items for testing")
parser.add_argument("--out",
default=False,
help="save model or not")
parser.add_argument("--gpu",
type=str,
default="0",
help="gpu ID")
args = parser.parse_args()
learning_rate = 0.0001
batch_size = 256
#embed_dim = 256
#factor_dim = 64
if torch.cuda.is_available():
device = torch.device('cuda')
FloatTensor = torch.cuda.FloatTensor
else:
device = torch.device('cpu')
FloatTensor = torch.FloatTensor
manualSeed = 706
random.seed(manualSeed)
torch.manual_seed(manualSeed)
print('CUDA Available:', torch.cuda.is_available())
# Prepare data
user_matrix, item_matrix, train_u, train_i, train_r, neg_candidates, u_cnt, user_rating_max = data_utils.load_train_data(args.data)
test_users, test_items = data_utils.load_test_ml1m()
eval_batch_size = 100 * 151
n_users, n_items = user_matrix.shape[0], user_matrix.shape[1]
user_array = user_matrix.toarray()
item_array = item_matrix.toarray()
user_idxlist, item_idxlist = list(range(n_users)), list(range(n_items))
# Model
model = JNCF(DF_layers, DI_layers, n_users, n_items, 'concat').to(device) # 'multi' or 'concat'
# Optimize
pair_loss_function = TOP1
point_loss_function = torch.nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
best_hr = 0.0
for epoch in range(args.epoch):
model.train()
idxlist = np.array(range(len(train_u)))
np.random.shuffle(idxlist)
epoch_loss, epoch_pair_loss, epoch_point_loss, epoch_i_point_loss, epoch_j_point_loss = .0, .0, .0, .0, .0
start_time = time.time()
for batch_idx, start_idx in enumerate(range(0, len(idxlist), batch_size)):
end_idx = min(start_idx + batch_size, len(idxlist))
idx = idxlist[start_idx:end_idx]
u_ids = train_u.take(idx)
i_ids = train_i.take(idx)
i_ratings = train_r.take(idx)
users = FloatTensor(user_array.take(u_ids, axis=0))
items = FloatTensor(item_array.take(i_ids, axis=0))
labels = FloatTensor(i_ratings)
rating_max = FloatTensor(user_rating_max.take(u_ids, axis=0))
Y_ui = labels / rating_max # for Normalized BCE
Y_uj = torch.zeros_like(Y_ui) # for Negative samples point-wise loss
# Negative Sampling
neg_items_list = []
for _ in range(0, n_negs):
neg_items = one_negative_sampling(u_ids, neg_candidates)
neg_items_list.append(neg_items)
for neg_idx in range(0, n_negs):
optimizer.zero_grad()
point_loss, pair_loss = 0., 0.
neg_ids = neg_items_list[neg_idx]
items_j = FloatTensor(item_array.take(neg_ids, axis=0))
y_i, y_j = model(users, items, items_j)
i_point_loss = point_loss_function(y_i, Y_ui) # positive items i
j_point_loss = point_loss_function(y_j, Y_uj) # negative items j
point_loss = i_point_loss + j_point_loss
pair_loss = pair_loss_function(y_i, y_j, n_negs)
loss = args.alpha * pair_loss + (1 - args.alpha) * point_loss
epoch_loss += loss.item()
epoch_pair_loss += pair_loss.item()
epoch_point_loss += point_loss.item()
loss.backward()
optimizer.step()
train_time = time.time() - start_time
# Evaluate
model.eval()
HR, NDCG = [], []
time_E = time.time()
for start_idx in range(0, len(test_users), eval_batch_size):
end_idx = min(start_idx + eval_batch_size, len(test_users))
u_ids = test_users[start_idx:end_idx]
i_ids = test_items[start_idx:end_idx]
users = FloatTensor(user_array.take(u_ids, axis=0))
items = FloatTensor(item_array.take(i_ids, axis=0))
preds, _ = model(users, items, items)
e_batch_size = eval_batch_size // 100 # faster eval
preds = torch.chunk(preds.detach().cpu(), e_batch_size)
chunked_items = torch.chunk(torch.IntTensor(i_ids), e_batch_size)
for i, pred in enumerate(preds):
_, indices = torch.topk(pred, 10)
recommends = torch.take(chunked_items[i], indices).numpy().tolist()
gt_item = chunked_items[i][0].item()
HR.append(hit(gt_item, recommends))
NDCG.append(ndcg(gt_item, recommends))
eval_time = time.time() - time_E
#if epoch % 10 == 0:
e_loss = epoch_loss / (batch_idx + 1)
e_pair = epoch_pair_loss / (batch_idx + 1)
e_point = epoch_point_loss / (batch_idx + 1)
e_i_point = epoch_i_point_loss / (batch_idx + 1)
e_j_point = epoch_j_point_loss / (batch_idx + 1)
text_1 = '[Epoch {:03d}]'.format(epoch) + '\ttrain: ' + time.strftime('%M: %S', time.gmtime(train_time)) + '\tHR: {:.4f}\tNDCG: {:.4f}\n'.format(np.mean(HR), np.mean(NDCG))
text_2 = 'Loss: {:.6f}\tPair: {:.4f}\tPoint: {:.4f}\ti_point: {:.4f}\tj_point: {:.4f}\n'.format(e_loss, e_pair, e_point, e_i_point, e_j_point)
print(text_1[:-1])
print(text_2[:-1])
output.write(text_1)
output.write(text_2)
if np.mean(HR) > best_hr:
best_hr, best_ndcg, best_epoch = np.mean(HR), np.mean(NDCG), epoch
result = 'DF: {} DI: {}. Best epoch {:02d}: HR = {:.4f}, NDCG = {:.4f}\n'.format(DF_layers, DI_layers, best_epoch, best_hr, best_ndcg)
print(result[:-1])
output.write(result)
output.close()