-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsipm_comp_TXT.py
63 lines (54 loc) · 2.7 KB
/
sipm_comp_TXT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import tables as tb
import argparse
def num(s):
try:
return int(s)
except ValueError:
return float(s)
parser = argparse.ArgumentParser(description='Calculation of the mean value of the parameters for different runs.')
parser.add_argument('files', metavar='Name of the files', nargs='+') #positional argument
ns = parser.parse_args()
files = ns.files
run_nos = [f[f.find('R')+1:f.find('R')+5] for f in files]
mean_run = int(round(np.mean(np.array([int(r) for r in run_nos]))))
print(f"Mean values for runs: {run_nos}")
print(f"Created file: sipm_comp_values_R{mean_run}.txt")
sensor_number = []
gain_list = [[] for i in range(len(files))]
gain_err_list = [[] for i in range(len(files))]
sigma_list = [[] for i in range(len(files))]
sigma_err_list = [[] for i in range(len(files))]
mu_list = [[] for i in range(len(files))]
mu_err_list = [[] for i in range(len(files))]
chi2_list = [[] for i in range(len(files))]
for k, file in enumerate(files):
with open(file, 'r') as df:
lines = df.read().split('\n')
for line in lines:
if line == '':
continue
_, _, sens_no, gain, gain_err, sigma, sigma_err, poiss_mu, poiss_mu_err, chi2 = [num(x) for x in line.split(',')]
if k == 0:
sensor_number.append(sens_no)
gain_list [k].append(gain )
gain_err_list [k].append(gain_err )
sigma_list [k].append(sigma )
sigma_err_list[k].append(sigma_err )
mu_list [k].append(poiss_mu )
mu_err_list [k].append(poiss_mu_err)
chi2_list [k].append(chi2 )
gain_mean = np.mean (np.array([j for j in gain_list]), axis=0)
gain_err_mean = np.linalg.norm(np.array([j for j in gain_err_list]), axis=0)
sigma_mean = np.mean (np.array([j for j in sigma_list]), axis=0)
sigma_err_mean = np.linalg.norm(np.array([j for j in sigma_err_list]), axis=0)
mu_mean = np.mean (np.array([j for j in mu_list]), axis=0)
mu_err_mean = np.linalg.norm(np.array([j for j in mu_err_list]), axis=0)
chi2_mean = np.mean (np.array([j for j in chi2_list]), axis=0)
with open('sipm_comp_values_R'+str(mean_run)+'.txt', 'w') as out_file:
for n,sens in enumerate(sensor_number):
out_file.write(str(mean_run)+',100000,'+str(sens) +','
+str(gain_mean [n])+','+str(gain_err_mean [n])+','
+str(sigma_mean[n])+','+str(sigma_err_mean[n])+','
+str(mu_mean [n])+','+str(mu_err_mean [n])+','
+str(chi2_mean [n])+'\n')