-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpmt_comp_TXT.py
72 lines (61 loc) · 3.22 KB
/
pmt_comp_TXT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np
import tables as tb
import argparse
def num(s):
try:
return int(s)
except ValueError:
return float(s)
parser = argparse.ArgumentParser(description='Calculation of the mean value of the parameters for different runs.')
parser.add_argument('files', metavar='Name of the files', nargs='+') #positional argument
ns = parser.parse_args()
files = ns.files
run_nos = [f[f.find('R')+1:f.find('R')+5] for f in files]
mean_run = int(round(np.mean(np.array([int(r) for r in run_nos]))))
print(f"Mean values for runs: {run_nos}")
print(f"Created file: pmt_comp_values_R{mean_run}.txt")
sensor_number = []
ped_sigma_list = [[] for i in range(len(files))]
ped_sigma_err_list = [[] for i in range(len(files))]
poiss_mu_list = [[] for i in range(len(files))]
poiss_mu_err_list = [[] for i in range(len(files))]
gain_list = [[] for i in range(len(files))]
gain_err_list = [[] for i in range(len(files))]
sigma_list = [[] for i in range(len(files))]
sigma_err_list = [[] for i in range(len(files))]
n_gauss_chi2_list = [[] for i in range(len(files))]
for k, file in enumerate(files):
with open(file, 'r') as df:
lines = df.read().split('\n')
for line in lines:
if line == '':
continue
_, _, sens_no, p_sig, p_sig_err, poiss, poiss_err, gain, gain_err, sigma, sigma_err, ng_chi2 = [num(x) for x in line.split(',')]
if k == 0:
sensor_number.append(sens_no)
ped_sigma_list [k].append(p_sig )
ped_sigma_err_list[k].append(p_sig_err)
poiss_mu_list [k].append(poiss )
poiss_mu_err_list [k].append(poiss_err)
gain_list [k].append(gain )
gain_err_list [k].append(gain_err )
sigma_list [k].append(sigma )
sigma_err_list [k].append(sigma_err)
n_gauss_chi2_list [k].append(ng_chi2 )
p_sig_mean = np.mean (np.array([j for j in ped_sigma_list]), axis=0)
p_sig_err_mean = np.linalg.norm(np.array([j for j in ped_sigma_err_list]), axis=0)
poiss_mean = np.mean (np.array([j for j in poiss_mu_list]), axis=0)
poiss_err_mean = np.linalg.norm(np.array([j for j in poiss_mu_err_list]), axis=0)
gain_mean = np.mean (np.array([j for j in gain_list]), axis=0)
gain_err_mean = np.linalg.norm(np.array([j for j in gain_err_list]), axis=0)
sigma_mean = np.mean (np.array([j for j in sigma_list]), axis=0)
sigma_err_mean = np.linalg.norm(np.array([j for j in sigma_err_list]), axis=0)
ng_chi2_mean = np.mean (np.array([j for j in n_gauss_chi2_list]), axis=0)
with open('pmt_comp_values_R'+str(mean_run)+'.txt', 'w') as out_file:
for n,sens in enumerate(sensor_number):
out_file.write(str(mean_run)+', 100000, '+str(sens)+', '
+str( p_sig_mean[n])+', '+str(p_sig_err_mean[n])+', '
+str( poiss_mean[n])+', '+str(poiss_err_mean[n])+', '
+str( gain_mean[n])+', '+str( gain_err_mean[n])+', '
+str( sigma_mean[n])+', '+str(sigma_err_mean[n])+', '
+str(ng_chi2_mean[n])+'\n')