-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpmtDatabaseTXT.py
53 lines (44 loc) · 2.04 KB
/
pmtDatabaseTXT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import tables as tb
import argparse
def num(s):
try:
return int(s)
except ValueError:
return float(s)
parser = argparse.ArgumentParser(description='Upload the DB. Calculation of the mean value of the parameters for different runs.')
parser.add_argument('integer', metavar='Minimum run', type=int)
parser.add_argument('files', metavar='Name of the files', nargs='+') #positional argument
ns = parser.parse_args()
min_run = ns.integer
files = ns.files
run_nos = [f[f.find('R')+1:f.find('R')+5] for f in files]
sensor_number = []
gain_list = [[] for i in range(len(files))]
gain_err_list = [[] for i in range(len(files))]
sigma_list = [[] for i in range(len(files))]
sigma_err_list = [[] for i in range(len(files))]
for k, file in enumerate(files):
with open(file, 'r') as df:
lines = df.read().split('\n')
for line in lines:
if line == '':
continue
_, _, sens_no, _, _, _, _, gain, gain_err, sigma, sigma_err, _ = [num(x) for x in line.split(',')]
if k == 0:
sensor_number.append(sens_no)
gain_list[k] .append( gain)
gain_err_list[k] .append( gain_err)
sigma_list[k] .append( sigma)
sigma_err_list[k].append(sigma_err)
gain = np.mean (np.array([j for j in gain_list]), axis=0)
gain_err = np.linalg.norm(np.array([j for j in gain_err_list]), axis=0)
sigma = np.mean (np.array([j for j in sigma_list]), axis=0)
sigma_err = np.linalg.norm(np.array([j for j in sigma_err_list]), axis=0)
#last_run = max(run_nos)
#param_names = ['MinRun', 'MaxRun', 'SensorID', 'Centroid', 'ErrorCentroid', 'Sigma', 'ErrorSigma']
with open('pmtDBvalues_R'+str(min_run)+'.txt', 'w') as out_file:
for n,sens in enumerate(sensor_number):
out_file.write(str(min_run)+', 100000, '+str(sens) +', '
+str(gain[n]) +', '+str(gain_err[n]) +', '
+str(sigma[n])+', '+str(sigma_err[n])+'\n')