Skip to content

Latest commit

 

History

History
28 lines (17 loc) · 991 Bytes

README.md

File metadata and controls

28 lines (17 loc) · 991 Bytes

yamlpyconfig

Library for parsing yaml config files in ML training pipelines. Based on Artur Kuzin talk "DL Pipelines tips & tricks".

Benefits:

  1. Config files have yaml format.
  2. All parameters in python code have form 'cfg.par_name'.
  3. Any parameter could be set in command line prompt.

There are 3 levels of configuration:

  1. Default config file is set during initialization:

    • yconf = YamlPyConfig('default_config', , conf_path='./configs')
    • Config file 'default_config.yaml' should be placed in './configs' folder.
    • python train_example.py
  2. Custom config file could be set with parameter --config:

    • python train_example.py --config custom_config
  3. Custom parameters could be set with appropriate keys:

    • python train_example.py --config custom_config --epochs 100 --lr 0.3

Installing Dependencies :

pip install -r requirements.txt