-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm_data_prep.py
99 lines (87 loc) · 3.53 KB
/
lstm_data_prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
import torch
import pickle
from torch.utils.data import TensorDataset, DataLoader
device = "cuda" if torch.cuda.is_available() else "cpu"
def setSeed(SEED = 66):
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
def determineTest():
setSeed()
index = np.arange(176)
np.random.shuffle(index)
testIndex = index[:76]
return testIndex
def splitDict(dictionary, indexList):
trainDict = {}
testDict = {}
for key, val in dictionary.items():
testvalArr = []
trainvalArr = []
if key == "testretest":
testvalArr = testvalArr
for i in range(val.shape[0]):
for p in range(val.shape[1]):
if p in indexList:
testvalArr.append(val[i][p])
else:
trainvalArr.append(val[i][p])
else:
for p in range(val.shape[0]):
if p in indexList:
testvalArr.append(val[p])
else:
trainvalArr.append(val[p])
trainDict[key] = np.array(trainvalArr)
testDict[key] = np.array(testvalArr)
return trainDict, testDict
def shaping(dictionary, pad = -100.):
X_arr = []
y_arr = np.empty((0, 90))
keylist = list(dictionary.keys())
for key, val in dictionary.items():
for i in range(val.shape[0]):
normalized_seq = (val[i] - np.mean(val[i])) / np.std(val[i])
X_arr.append(normalized_seq)
clip = [key for j in range(min(val.shape[1], 90))]
while len(clip) < 90:
clip.append("")
clip = np.array(clip).reshape((1, 90))
y_arr = np.concatenate((y_arr, clip), axis=0)
X_padded = paddingArr(np.array(X_arr), pad=pad)
y_vector = vectorize_labels(y_arr, keylist, len(keylist))
return X_padded, y_vector
def paddingArr(arr, max_len=90, num_features=300, pad = -100.):
padded_arr = np.empty((arr.shape[0], max_len, num_features), dtype=float)
for i, seq in enumerate(arr):
rows = max(max_len - seq.shape[0], 0)
pad_vals = [[pad for k in range(num_features)] for j in range(rows)]
if rows > 0:
newArr = np.concatenate((seq, np.array(pad_vals, dtype=float)), axis=0)
padded_arr[i] = newArr
else:
padded_arr[i] = seq[:max_len, :]
return padded_arr
def vectorize_labels(labels, keys, n_class):
results = np.zeros((int(labels.shape[0]), int(labels.shape[1]), n_class))
for i in range(labels.shape[0]):
for j in range(labels.shape[1]):
if labels[i][j] != '':
indexNum = keys.index(labels[i][j])
results[i][j][indexNum] = 1.
return results
def numpy_prep(dictionary, pad = 0.):
testIndex = determineTest()
train, test = splitDict(dictionary, testIndex)
X_train, y_train = shaping(train, pad = pad)
X_test, y_test = shaping(test, pad = pad)
return X_train, y_train, X_test, y_test
def prep(dictionary, pad=-1., batch_size=32):
X_train, y_train, X_test, y_test = numpy_prep(dictionary, pad)
train_data = TensorDataset(torch.from_numpy(X_train).float(), torch.from_numpy(y_train).float())
test_data = TensorDataset(torch.from_numpy(X_test).float(), torch.from_numpy(y_test).float())
train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
test_loader = DataLoader(test_data, shuffle=True, batch_size=batch_size)
return train_loader, test_loader