forked from BLAST-WarpX/warpx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPICMI_inputs_2d.py
executable file
·167 lines (130 loc) · 3.82 KB
/
PICMI_inputs_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python3
import argparse
import sys
import numpy as np
from pywarpx import callbacks, libwarpx, particle_containers, picmi
# Create the parser and add the argument
parser = argparse.ArgumentParser()
parser.add_argument(
'-u', '--unique', action='store_true',
help="Whether injected particles should be treated as unique"
)
# Parse the input
args, left = parser.parse_known_args()
sys.argv = sys.argv[:1] + left
##########################
# numerics parameters
##########################
dt = 7.5e-10
# --- Nb time steps
max_steps = 10
# --- grid
nx = 64
ny = 64
xmin = 0
xmax = 0.03
ymin = 0
ymax = 0.03
##########################
# numerics components
##########################
grid = picmi.Cartesian2DGrid(
number_of_cells = [nx, ny],
lower_bound = [xmin, ymin],
upper_bound = [xmax, ymax],
lower_boundary_conditions = ['dirichlet', 'periodic'],
upper_boundary_conditions = ['dirichlet', 'periodic'],
lower_boundary_conditions_particles = ['absorbing', 'periodic'],
upper_boundary_conditions_particles = ['absorbing', 'periodic'],
moving_window_velocity = None,
warpx_max_grid_size = 32
)
solver = picmi.ElectrostaticSolver(
grid=grid, method='Multigrid', required_precision=1e-6,
warpx_self_fields_verbosity=0
)
##########################
# physics components
##########################
electrons = picmi.Species(
particle_type='electron', name='electrons'
)
##########################
# diagnostics
##########################
particle_diag = picmi.ParticleDiagnostic(
name = 'diag1',
period = 10,
write_dir = '.',
warpx_file_prefix = f"Python_particle_attr_access_{'unique_' if args.unique else ''}plt"
)
field_diag = picmi.FieldDiagnostic(
name = 'diag1',
grid = grid,
period = 10,
data_list = ['phi'],
write_dir = '.',
warpx_file_prefix = f"Python_particle_attr_access_{'unique_' if args.unique else ''}plt"
)
##########################
# simulation setup
##########################
sim = picmi.Simulation(
solver = solver,
time_step_size = dt,
max_steps = max_steps,
verbose = 1
)
sim.add_species(
electrons,
layout = picmi.GriddedLayout(
n_macroparticle_per_cell=[0, 0], grid=grid
)
)
sim.add_diagnostic(particle_diag)
sim.add_diagnostic(field_diag)
sim.initialize_inputs()
sim.initialize_warpx()
##########################
# python particle data access
##########################
# set numpy random seed so that the particle properties generated
# below will be reproducible from run to run
np.random.seed(30025025)
elec_wrapper = particle_containers.ParticleContainerWrapper('electrons')
elec_wrapper.add_real_comp('newPid')
my_id = libwarpx.amr.ParallelDescriptor.MyProc()
def add_particles():
nps = 10 * (my_id + 1)
x = np.linspace(0.005, 0.025, nps)
y = np.zeros(nps)
z = np.linspace(0.005, 0.025, nps)
ux = np.random.normal(loc=0, scale=1e3, size=nps)
uy = np.random.normal(loc=0, scale=1e3, size=nps)
uz = np.random.normal(loc=0, scale=1e3, size=nps)
w = np.ones(nps) * 2.0
newPid = 5.0
elec_wrapper.add_particles(
x=x, y=y, z=z, ux=ux, uy=uy, uz=uz,
w=w, newPid=newPid,
unique_particles=args.unique
)
callbacks.installbeforestep(add_particles)
##########################
# simulation run
##########################
sim.step(max_steps - 1)
##########################
# check that the new PIDs
# are properly set
##########################
assert (elec_wrapper.nps == 270 / (2 - args.unique))
assert (elec_wrapper.particle_container.get_comp_index('w') == 2)
assert (elec_wrapper.particle_container.get_comp_index('newPid') == 6)
new_pid_vals = elec_wrapper.get_particle_real_arrays('newPid', 0)
for vals in new_pid_vals:
assert np.allclose(vals, 5)
##########################
# take the final sim step
##########################
sim.step(1)