-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
225 lines (190 loc) · 7.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import argparse
import itertools
import logging
import os
import numpy as np
import open_clip
import torch
from accelerate import Accelerator
from peft import LoraConfig, get_peft_model
from tqdm.auto import tqdm
from clipora.config import TrainConfig, parse_yaml_to_config
from clipora.data import get_dataloader
from clipora.lora.inject import inject_linear_attention
from clipora.scheduler.cosine import cosine_lr
logger = logging.getLogger(__name__)
def compute_clip_loss(model, X, Y):
loss = open_clip.ClipLoss()
image_features, text_features, logit_scale = model(X, Y)
total_loss = loss(image_features, text_features, logit_scale)
return total_loss
@torch.no_grad()
def evaluate(model, dataloader, config):
out = {}
model.eval()
losses = torch.zeros(config.eval_steps)
for k in range(config.eval_steps):
X, Y = next(iter(dataloader))
loss = compute_clip_loss(model, X, Y)
losses[k] = loss.item()
out["eval_loss"] = losses.mean()
model.train()
return out
def init_model(config: TrainConfig):
model, preprocess_train, _ = open_clip.create_model_and_transforms(
model_name=config.model_name,
pretrained=config.pretrained,
)
model_config = open_clip.get_model_config(config.model_name)
if config.lora_text:
model = inject_linear_attention(
model=model,
encoders={"transformer"},
embed_dim=model_config["embed_dim"],
num_heads=model_config["text_cfg"]["heads"],
)
if config.lora_vision:
model = inject_linear_attention(
model=model,
encoders={"visual.transformer"},
embed_dim=model_config["vision_cfg"]["width"],
num_heads=config.vision_heads,
)
lora_config = LoraConfig(
r=config.lora_rank,
lora_alpha=config.lora_alpha,
lora_dropout=config.lora_dropout,
target_modules=["qkv", "proj"],
)
model = get_peft_model(model, lora_config)
if config.compile:
model.compile()
return model, preprocess_train
def main(config: TrainConfig):
logging.basicConfig(level=logging.INFO)
accelerator = Accelerator(
gradient_accumulation_steps=config.gradient_accumulation_steps,
log_with="wandb" if config.wandb else None,
)
if accelerator.is_main_process:
accelerator.print()
if config.output_dir is not None:
accelerator.print(f"Output directory: {config.output_dir}")
os.makedirs(config.output_dir, exist_ok=True)
if config.wandb:
accelerator.init_trackers(
project_name=config.wandb_project if config.wandb_project else None,
)
if config.seed is not None:
seed = config.seed
accelerator.print(f"Using seed {seed}")
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
model, preprocess_train = init_model(config)
train_dataloader = get_dataloader(config, preprocess_train, "train")
eval_dataloader = get_dataloader(config, preprocess_train, "val")
assert len(train_dataloader), "No data found, please check your data location."
if config.gradient_checkpointing:
model.set_grad_checkpointing(True)
if config.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
if isinstance(config.learning_rate, str):
config.learning_rate = float(config.learning_rate)
params_to_optimize = [
{
"params": itertools.chain(model.parameters()),
"lr": config.learning_rate,
},
]
optimizer = optimizer_class(
params_to_optimize,
lr=config.learning_rate,
betas=(config.adam_beta1, config.adam_beta2),
eps=config.adam_epsilon,
)
# create scheduler if train
total_steps = train_dataloader.num_batches * config.epochs
# if args.warmup is float, it is a percentage of total_steps
if isinstance(config.warmup, float):
assert (
0 <= config.warmup <= 1
), "Warmup must be between 0 and 1 if not a fixed number of steps."
config.warmup = int(config.warmup * total_steps)
scheduler = cosine_lr(optimizer, config.learning_rate, config.warmup, total_steps)
model, optimizer, scheduler, train_dataloader, eval_dataloader = (
accelerator.prepare(
model, optimizer, scheduler, train_dataloader, eval_dataloader
)
)
print("***** Running training *****")
print(f" Num Iters = {len(train_dataloader)}")
print(f" Num Epochs = {config.epochs}")
print(f" Instantaneous batch size per device = {config.batch_size}")
print(f" Gradient Accumulation steps = {config.gradient_accumulation_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(config.epochs * len(train_dataloader)),
disable=not accelerator.is_local_main_process,
)
progress_bar.set_description("Steps")
global_step = 0
best_val_loss = float("inf")
for epoch in range(config.epochs):
model.train()
for step, batch in enumerate(train_dataloader):
if accelerator.is_local_main_process:
if global_step % config.eval_interval == 0:
if accelerator.is_local_main_process:
eval_loss = evaluate(model, eval_dataloader, config)
accelerator.log(eval_loss, step=global_step)
progress_bar.write(
f"Step: {global_step}, Eval loss: {eval_loss['eval_loss']}"
)
if eval_loss["eval_loss"] < best_val_loss:
best_val_loss = eval_loss["eval_loss"]
save_path = os.path.join(
config.output_dir, f"checkpoint_{global_step}"
)
model.save_pretrained(save_path)
X, Y = batch
loss = compute_clip_loss(model, X, Y)
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = model.parameters()
accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm)
optimizer.step()
scheduler(global_step)
progress_bar.update(1)
global_step += 1
logs = {
"loss": loss.item(),
"learning_rate": optimizer.param_groups[0]["lr"],
"step": global_step,
"epoch": epoch,
}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
accelerator.wait_for_everyone()
if accelerator.is_local_main_process:
save_path = os.path.join(config.output_dir)
model.save_pretrained(save_path)
accelerator.print("\n\nTraining completed.\n\n")
accelerator.end_training()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
type=str,
help="The path to the yaml file containing the training configuration.",
)
config = parse_yaml_to_config(parser.parse_args().config)
main(config)