|
| 1 | +# Copyright (c) OpenMMLab. All rights reserved. |
| 2 | +from mmengine.dataset.dataset_wrapper import RepeatDataset |
| 3 | +from mmengine.dataset.sampler import DefaultSampler |
| 4 | +from mmengine.visualization.vis_backend import LocalVisBackend |
| 5 | + |
| 6 | +from mmdet3d.datasets.kitti_dataset import KittiDataset |
| 7 | +from mmdet3d.datasets.transforms.formating import Pack3DDetInputs |
| 8 | +from mmdet3d.datasets.transforms.loading import (LoadAnnotations3D, |
| 9 | + LoadPointsFromFile) |
| 10 | +from mmdet3d.datasets.transforms.test_time_aug import MultiScaleFlipAug3D |
| 11 | +from mmdet3d.datasets.transforms.transforms_3d import ( # noqa |
| 12 | + GlobalRotScaleTrans, ObjectNoise, ObjectRangeFilter, ObjectSample, |
| 13 | + PointShuffle, PointsRangeFilter, RandomFlip3D) |
| 14 | +from mmdet3d.evaluation.metrics.kitti_metric import KittiMetric |
| 15 | +from mmdet3d.visualization.local_visualizer import Det3DLocalVisualizer |
| 16 | + |
| 17 | +# dataset settings |
| 18 | +dataset_type = 'KittiDataset' |
| 19 | +data_root = 'data/kitti/' |
| 20 | +class_names = ['Pedestrian', 'Cyclist', 'Car'] |
| 21 | +point_cloud_range = [0, -40, -3, 70.4, 40, 1] |
| 22 | +input_modality = dict(use_lidar=True, use_camera=False) |
| 23 | +metainfo = dict(classes=class_names) |
| 24 | + |
| 25 | +# Example to use different file client |
| 26 | +# Method 1: simply set the data root and let the file I/O module |
| 27 | +# automatically infer from prefix (not support LMDB and Memcache yet) |
| 28 | + |
| 29 | +# data_root = 's3://openmmlab/datasets/detection3d/kitti/' |
| 30 | + |
| 31 | +# Method 2: Use backend_args, file_client_args in versions before 1.1.0 |
| 32 | +# backend_args = dict( |
| 33 | +# backend='petrel', |
| 34 | +# path_mapping=dict({ |
| 35 | +# './data/': 's3://openmmlab/datasets/detection3d/', |
| 36 | +# 'data/': 's3://openmmlab/datasets/detection3d/' |
| 37 | +# })) |
| 38 | +backend_args = None |
| 39 | + |
| 40 | +db_sampler = dict( |
| 41 | + data_root=data_root, |
| 42 | + info_path=data_root + 'kitti_dbinfos_train.pkl', |
| 43 | + rate=1.0, |
| 44 | + prepare=dict( |
| 45 | + filter_by_difficulty=[-1], |
| 46 | + filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)), |
| 47 | + classes=class_names, |
| 48 | + sample_groups=dict(Car=12, Pedestrian=6, Cyclist=6), |
| 49 | + points_loader=dict( |
| 50 | + type=LoadPointsFromFile, |
| 51 | + coord_type='LIDAR', |
| 52 | + load_dim=4, |
| 53 | + use_dim=4, |
| 54 | + backend_args=backend_args), |
| 55 | + backend_args=backend_args) |
| 56 | + |
| 57 | +train_pipeline = [ |
| 58 | + dict( |
| 59 | + type=LoadPointsFromFile, |
| 60 | + coord_type='LIDAR', |
| 61 | + load_dim=4, # x, y, z, intensity |
| 62 | + use_dim=4, |
| 63 | + backend_args=backend_args), |
| 64 | + dict(type=LoadAnnotations3D, with_bbox_3d=True, with_label_3d=True), |
| 65 | + dict(type=ObjectSample, db_sampler=db_sampler), |
| 66 | + dict( |
| 67 | + type=ObjectNoise, |
| 68 | + num_try=100, |
| 69 | + translation_std=[1.0, 1.0, 0.5], |
| 70 | + global_rot_range=[0.0, 0.0], |
| 71 | + rot_range=[-0.78539816, 0.78539816]), |
| 72 | + dict(type=RandomFlip3D, flip_ratio_bev_horizontal=0.5), |
| 73 | + dict( |
| 74 | + type=GlobalRotScaleTrans, |
| 75 | + rot_range=[-0.78539816, 0.78539816], |
| 76 | + scale_ratio_range=[0.95, 1.05]), |
| 77 | + dict(type=PointsRangeFilter, point_cloud_range=point_cloud_range), |
| 78 | + dict(type=ObjectRangeFilter, point_cloud_range=point_cloud_range), |
| 79 | + dict(type=PointShuffle), |
| 80 | + dict( |
| 81 | + type=Pack3DDetInputs, keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) |
| 82 | +] |
| 83 | +test_pipeline = [ |
| 84 | + dict( |
| 85 | + type=LoadPointsFromFile, |
| 86 | + coord_type='LIDAR', |
| 87 | + load_dim=4, |
| 88 | + use_dim=4, |
| 89 | + backend_args=backend_args), |
| 90 | + dict( |
| 91 | + type=MultiScaleFlipAug3D, |
| 92 | + img_scale=(1333, 800), |
| 93 | + pts_scale_ratio=1, |
| 94 | + flip=False, |
| 95 | + transforms=[ |
| 96 | + dict( |
| 97 | + type=GlobalRotScaleTrans, |
| 98 | + rot_range=[0, 0], |
| 99 | + scale_ratio_range=[1., 1.], |
| 100 | + translation_std=[0, 0, 0]), |
| 101 | + dict(type=RandomFlip3D), |
| 102 | + dict(type=PointsRangeFilter, point_cloud_range=point_cloud_range) |
| 103 | + ]), |
| 104 | + dict(type=Pack3DDetInputs, keys=['points']) |
| 105 | +] |
| 106 | +# construct a pipeline for data and gt loading in show function |
| 107 | +# please keep its loading function consistent with test_pipeline (e.g. client) |
| 108 | +eval_pipeline = [ |
| 109 | + dict( |
| 110 | + type=LoadPointsFromFile, |
| 111 | + coord_type='LIDAR', |
| 112 | + load_dim=4, |
| 113 | + use_dim=4, |
| 114 | + backend_args=backend_args), |
| 115 | + dict(type=Pack3DDetInputs, keys=['points']) |
| 116 | +] |
| 117 | +train_dataloader = dict( |
| 118 | + batch_size=6, |
| 119 | + num_workers=4, |
| 120 | + persistent_workers=True, |
| 121 | + sampler=dict(type=DefaultSampler, shuffle=True), |
| 122 | + dataset=dict( |
| 123 | + type=RepeatDataset, |
| 124 | + times=2, |
| 125 | + dataset=dict( |
| 126 | + type=KittiDataset, |
| 127 | + data_root=data_root, |
| 128 | + ann_file='kitti_infos_train.pkl', |
| 129 | + data_prefix=dict(pts='training/velodyne_reduced'), |
| 130 | + pipeline=train_pipeline, |
| 131 | + modality=input_modality, |
| 132 | + test_mode=False, |
| 133 | + metainfo=metainfo, |
| 134 | + # we use box_type_3d='LiDAR' in kitti and nuscenes dataset |
| 135 | + # and box_type_3d='Depth' in sunrgbd and scannet dataset. |
| 136 | + box_type_3d='LiDAR', |
| 137 | + backend_args=backend_args))) |
| 138 | +val_dataloader = dict( |
| 139 | + batch_size=1, |
| 140 | + num_workers=1, |
| 141 | + persistent_workers=True, |
| 142 | + drop_last=False, |
| 143 | + sampler=dict(type=DefaultSampler, shuffle=False), |
| 144 | + dataset=dict( |
| 145 | + type=KittiDataset, |
| 146 | + data_root=data_root, |
| 147 | + data_prefix=dict(pts='training/velodyne_reduced'), |
| 148 | + ann_file='kitti_infos_val.pkl', |
| 149 | + pipeline=test_pipeline, |
| 150 | + modality=input_modality, |
| 151 | + test_mode=True, |
| 152 | + metainfo=metainfo, |
| 153 | + box_type_3d='LiDAR', |
| 154 | + backend_args=backend_args)) |
| 155 | +test_dataloader = dict( |
| 156 | + batch_size=1, |
| 157 | + num_workers=1, |
| 158 | + persistent_workers=True, |
| 159 | + drop_last=False, |
| 160 | + sampler=dict(type=DefaultSampler, shuffle=False), |
| 161 | + dataset=dict( |
| 162 | + type=KittiDataset, |
| 163 | + data_root=data_root, |
| 164 | + data_prefix=dict(pts='training/velodyne_reduced'), |
| 165 | + ann_file='kitti_infos_val.pkl', |
| 166 | + pipeline=test_pipeline, |
| 167 | + modality=input_modality, |
| 168 | + test_mode=True, |
| 169 | + metainfo=metainfo, |
| 170 | + box_type_3d='LiDAR', |
| 171 | + backend_args=backend_args)) |
| 172 | +val_evaluator = dict( |
| 173 | + type=KittiMetric, |
| 174 | + ann_file=data_root + 'kitti_infos_val.pkl', |
| 175 | + metric='bbox', |
| 176 | + backend_args=backend_args) |
| 177 | +test_evaluator = val_evaluator |
| 178 | + |
| 179 | +vis_backends = [dict(type=LocalVisBackend)] |
| 180 | +visualizer = dict( |
| 181 | + type=Det3DLocalVisualizer, vis_backends=vis_backends, name='visualizer') |
0 commit comments