@@ -86,7 +86,20 @@ mmdetection3d
86
86
87
87
### KITTI
88
88
89
- Download KITTI 3D detection data [ HERE] ( http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d ) . Prepare KITTI data splits by running:
89
+ 1 . Download KITTI 3D detection data [ HERE] ( http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d ) . Alternatively, you
90
+ can download the dataset from [ OpenDataLab] ( https://opendatalab.com/ ) using MIM. The command scripts are the following:
91
+
92
+ ``` bash
93
+ # install OpenDataLab CLI tools
94
+ pip install -U opendatalab
95
+ # log in OpenDataLab. Note that you should register an account on [OpenDataLab](https://opendatalab.com/) before.
96
+ pip install odl
97
+ odl login
98
+ # download and preprocess by MIM
99
+ mim download mmdet3d --dataset kitti
100
+ ```
101
+
102
+ 2 . Prepare KITTI data splits by running:
90
103
91
104
``` bash
92
105
mkdir ./data/kitti/ && mkdir ./data/kitti/ImageSets
@@ -98,7 +111,7 @@ wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/sec
98
111
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/trainval.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/trainval.txt
99
112
```
100
113
101
- Then generate info files by running:
114
+ 3 . Generate info files by running:
102
115
103
116
``` bash
104
117
python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti
@@ -160,7 +173,20 @@ Note that:
160
173
161
174
### NuScenes
162
175
163
- Download nuScenes V1.0 full dataset data [ HERE] ( https://www.nuscenes.org/download ) . Prepare nuscenes data by running:
176
+ 1 . Download nuScenes V1.0 full dataset data [ HERE] ( https://www.nuscenes.org/download ) . Alternatively, you
177
+ can download the dataset from [ OpenDataLab] ( https://opendatalab.com/ ) using MIM. The downloading and unzipping command scripts are the following:
178
+
179
+ ``` bash
180
+ # install OpenDataLab CLI tools
181
+ pip install -U opendatalab
182
+ # log in OpenDataLab. Note that you should register an account on [OpenDataLab](https://opendatalab.com/) before.
183
+ pip install odl
184
+ odl login
185
+ # download and preprocess by MIM
186
+ mim download mmdet3d --dataset nuscenes
187
+ ```
188
+
189
+ 2 . Prepare nuscenes data by running:
164
190
165
191
``` bash
166
192
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes
@@ -187,9 +213,20 @@ Note that we follow the original folder names for clear organization. Please ren
187
213
188
214
### SemanticKITTI
189
215
190
- Download SemanticKITTI dataset [ HERE] ( http://semantic-kitti.org/dataset.html#download ) and unzip all zip files.
216
+ 1 . Download SemanticKITTI dataset [ HERE] ( http://semantic-kitti.org/dataset.html#download ) and unzip all zip files. Alternatively, you
217
+ can download the dataset from [ OpenDataLab] ( https://opendatalab.com/ ) using MIM. The downloading and unzipping command scripts are the following:
218
+
219
+ ``` bash
220
+ # install OpenDataLab CLI tools
221
+ pip install -U opendatalab
222
+ # log in OpenDataLab. Note that you should register an account on [OpenDataLab](https://opendatalab.com/) before.
223
+ pip install odl
224
+ odl login
225
+ # download and preprocess by MIM
226
+ mim download mmdet3d --dataset semantickitti
227
+ ```
191
228
192
- Then generate info files by running:
229
+ 2 . Generate info files by running:
193
230
194
231
``` bash
195
232
python ./tools/create_data.py semantickitti --root-path ./data/semantickitti --out-dir ./data/semantickitti --extra-tag semantickitti
0 commit comments