|
| 1 | +# vehicle-attributes-recognition-barrier-0042 |
| 2 | + |
| 3 | +## Use Case and High-Level Description |
| 4 | + |
| 5 | +This model presents a vehicle attributes classification algorithm for a traffic analysis scenario. |
| 6 | + |
| 7 | +## Example |
| 8 | + |
| 9 | + |
| 10 | + |
| 11 | +## Specification |
| 12 | + |
| 13 | +| Metric | Value | |
| 14 | +|-----------------------|----------------------------------------------| |
| 15 | +| Car pose | Front facing cars | |
| 16 | +| Occlusion coverage | <50% | |
| 17 | +| Min object width | 72 pixels | |
| 18 | +| Supported colors | White, gray, yellow, red, green, blue, black | |
| 19 | +| Supported types | Car, van, truck, bus | |
| 20 | +| GFlops | 0.462 | |
| 21 | +| MParams | 11.177 | |
| 22 | +| Source framework | PyTorch\* | |
| 23 | + |
| 24 | +## Accuracy |
| 25 | + |
| 26 | +### Color accuracy, % |
| 27 | + |
| 28 | +| Color | Accuracy | |
| 29 | +|:--------:|:----------:| |
| 30 | +| white | 85.61% | |
| 31 | +| gray | 77.47% | |
| 32 | +| yellow | 49.73% | |
| 33 | +| red | 97.62% | |
| 34 | +| green | 74.24% | |
| 35 | +| blue | 80.02% | |
| 36 | +| black | 97.55% | |
| 37 | + |
| 38 | +**Color average accuracy: 80.32%** |
| 39 | + |
| 40 | +### Type accuracy, % |
| 41 | + |
| 42 | +| Type | Accuracy | |
| 43 | +|:-----:|:--------:| |
| 44 | +| car | 97.96% | |
| 45 | +| van | 86.08% | |
| 46 | +| truck | 97.47% | |
| 47 | +| bus | 42.49% | |
| 48 | + |
| 49 | +**Type average accuracy: 81.00%** |
| 50 | + |
| 51 | +## Performance |
| 52 | + |
| 53 | +## Inputs |
| 54 | + |
| 55 | +Name: `input` , shape: [1x3x72x72] - an input image in following format |
| 56 | +[1xCxHxW], where: |
| 57 | +- C - number of channels |
| 58 | +- H - image height |
| 59 | +- W - image width |
| 60 | + |
| 61 | +Expected color order: BGR. |
| 62 | + |
| 63 | +## Outputs |
| 64 | + |
| 65 | +1. Name: `color`, shape: [1, 7] - probabilities across seven color classes |
| 66 | + [`white`, `gray`, `yellow`, `red`, `green`, `blue`, `black`] |
| 67 | +2. Name: `type`, shape: [1, 4] - probabilities across four type classes |
| 68 | + [`car`, `van`, `truck`, `bus`] |
| 69 | + |
| 70 | +## Legal Information |
| 71 | +[\*] Other names and brands may be claimed as the property of others. |
0 commit comments