You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: tools/accuracy_checker/README.md
+1
Original file line number
Diff line number
Diff line change
@@ -172,6 +172,7 @@ And optionally:
172
172
- `preprocessing`: list of preprocessing steps applied to input data. If you want calculated metrics to match reported, you must reproduce preprocessing from canonical paper of your topology or ask topology author about required steps.
173
173
- `postprocessing`: list of postprocessing steps.
174
174
- `reader`: approach for data reading. Default reader is `opencv_imread`.
175
+
- `segmentation_masks_source`- path to directory where gt masks for semantic segmentation task stored.
Copy file name to clipboardexpand all lines: tools/accuracy_checker/accuracy_checker/annotation_converters/README.md
+2
Original file line number
Diff line number
Diff line change
@@ -86,6 +86,7 @@ Accuracy Checker supports following list of annotation converters and specific f
86
86
*`images_dir` - path to directory with images related to devkit root (default JPEGImages).
87
87
*`mask_dir` - path to directory with ground truth segmentation masks related to devkit root (default SegmentationClass).
88
88
*`dataset_meta_file` - path path to json file with dataset meta (e.g. label_map, color_encoding).Optional, more details in [Customizing dataset meta](#customizing-dataset-meta) section.
89
+
**Note: since OpenVINO 2020.4 converter behaviour changed. `data_source` parameter of dataset should contains directory for images only, if you have segmentation mask in separated location, please use `segmentation_masks_source` for specifying gt masks location.**
89
90
*`mscoco_detection` - converts MS COCO dataset for object detection task to `DetectionAnnotation`.
90
91
*`annotation_file` - path ot annotation file in json format.
91
92
*`has_background` - allows convert dataset with/without adding background_label. Accepted values are True or False. (default is False).
@@ -198,6 +199,7 @@ Accuracy Checker supports following list of annotation converters and specific f
198
199
*`image_postfix` - postfix part for mask file names (optional, default is `.png`).
199
200
*`mask_loader` - the way how GT mask should be loaded. Supported methods: `pillow`, `opencv`, `nifti`, `numpy`, `scipy`.
200
201
*`dataset_meta_file` - path to json file with prepared dataset meta info. It should contains `label_map` key with dictionary in format class_id: class_name and optionally `segmentation_colors` (if your dataset uses color encoding). Segmentation colors is a list of channel-wise values for each class. (e.g. if your dataset has 3 classes in BGR colors, segmentation colors for it will looks like: `[[255, 0, 0], [0, 255, 0], [0, 0, 255]]`). (Optional, you can provide self-created file as `dataset_meta` in your config).
202
+
**Note: since OpenVINO 2020.4 converter behaviour changed. `data_source` parameter of dataset should contains directory for images only, if you have segmentation mask in separated location, please use `segmentation_masks_source` for specifying gt masks location.**
201
203
*`camvid` - converts CamVid dataset format to `SegmentationAnnotation`.
202
204
*`annotation_file` - file in txt format which contains list of validation pairs (`<path_to_image>``<path_to_annotation>` separated by space)
203
205
*`dataset_meta_file` - path path to json file with dataset meta (e.g. label_map, color_encoding).Optional, more details in [Customizing dataset meta](#customizing-dataset-meta) section.
0 commit comments