forked from huggingface/optimum-intel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__main__.py
409 lines (352 loc) · 19 KB
/
__main__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Union
from requests.exceptions import ConnectionError as RequestsConnectionError
from transformers import AutoConfig, PreTrainedTokenizerBase
from optimum.exporters import TasksManager
from optimum.exporters.onnx import __main__ as optimum_main
from optimum.exporters.onnx.base import OnnxConfig, OnnxConfigWithPast
from optimum.utils import DEFAULT_DUMMY_SHAPES
from optimum.utils.save_utils import maybe_load_preprocessors, maybe_save_preprocessors
from ...intel.utils.import_utils import (
is_nncf_available,
is_openvino_tokenizers_available,
is_optimum_version,
is_transformers_version,
)
from .convert import export_models, export_tokenizer
from .stateful import ensure_export_task_support_stateful
if is_optimum_version(">=", "1.16.0"):
from optimum.exporters.onnx.constants import SDPA_ARCHS_ONNX_EXPORT_NOT_SUPPORTED
else:
# Copied from https://github.com/huggingface/optimum/blob/main/optimum/exporters/onnx/constants.py
SDPA_ARCHS_ONNX_EXPORT_NOT_SUPPORTED = [
"bart",
"whisper",
]
OV_XML_FILE_NAME = "openvino_model.xml"
_MAX_UNCOMPRESSED_SIZE = 1e9
logger = logging.getLogger(__name__)
def main_export(
model_name_or_path: str,
output: Union[str, Path],
task: str = "auto",
device: str = "cpu",
framework: Optional[str] = None,
cache_dir: Optional[str] = None,
trust_remote_code: bool = False,
pad_token_id: Optional[int] = None,
subfolder: str = "",
revision: str = "main",
force_download: bool = False,
local_files_only: bool = False,
use_auth_token: Optional[Union[bool, str]] = None,
model_kwargs: Optional[Dict[str, Any]] = None,
custom_onnx_configs: Optional[Dict[str, "OnnxConfig"]] = None,
fn_get_submodels: Optional[Callable] = None,
compression_option: Optional[str] = None,
compression_ratio: Optional[float] = None,
stateful: bool = True,
**kwargs_shapes,
):
"""
Full-suite OpenVINO export.
Args:
> Required parameters
model_name_or_path (`str`):
Model ID on huggingface.co or path on disk to the model repository to export.
output (`Union[str, Path]`):
Path indicating the directory where to store the generated ONNX model.
> Optional parameters
task (`Optional[str]`, defaults to `None`):
The task to export the model for. If not specified, the task will be auto-inferred based on the model. For decoder models,
use `xxx-with-past` to export the model using past key values in the decoder.
device (`str`, defaults to `"cpu"`):
The device to use to do the export. Defaults to "cpu".
framework (`Optional[str]`, defaults to `None`):
The framework to use for the ONNX export (`"pt"` or `"tf"`). If not provided, will attempt to automatically detect
the framework for the checkpoint.
cache_dir (`Optional[str]`, defaults to `None`):
Path indicating where to store cache. The default Hugging Face cache path will be used by default.
trust_remote_code (`bool`, defaults to `False`):
Allows to use custom code for the modeling hosted in the model repository. This option should only be set for repositories
you trust and in which you have read the code, as it will execute on your local machine arbitrary code present in the
model repository.
pad_token_id (`Optional[int]`, defaults to `None`):
This is needed by some models, for some tasks. If not provided, will attempt to use the tokenizer to guess it.
subfolder (`str`, defaults to `""`):
In case the relevant files are located inside a subfolder of the model repo either locally or on huggingface.co, you can
specify the folder name here.
revision (`str`, defaults to `"main"`):
Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id.
force_download (`bool`, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
local_files_only (`Optional[bool]`, defaults to `False`):
Whether or not to only look at local files (i.e., do not try to download the model).
use_auth_token (`Optional[str]`, defaults to `None`):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `transformers-cli login` (stored in `~/.huggingface`).
model_kwargs (`Optional[Dict[str, Any]]`, defaults to `None`):
Experimental usage: keyword arguments to pass to the model during
the export. This argument should be used along the `custom_onnx_configs` argument
in case, for example, the model inputs/outputs are changed (for example, if
`model_kwargs={"output_attentions": True}` is passed).
custom_onnx_configs (`Optional[Dict[str, OnnxConfig]]`, defaults to `None`):
Experimental usage: override the default ONNX config used for the given model. This argument may be useful for advanced users that desire a finer-grained control on the export. An example is available [here](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model).
fn_get_submodels (`Optional[Callable]`, defaults to `None`):
Experimental usage: Override the default submodels that are used at the export. This is
especially useful when exporting a custom architecture that needs to split the ONNX (e.g. encoder-decoder). If unspecified with custom models, optimum will try to use the default submodels used for the given task, with no guarantee of success.
compression_option (`Optional[str]`, defaults to `None`):
The weight compression option, e.g. `f16` stands for float16 weights, `i8` - INT8 weights, `int4_sym_g128` - INT4 symmetric weights w/ group size 128, `int4_asym_g128` - as previous but asymmetric w/ zero-point,
`int4_sym_g64` - INT4 symmetric weights w/ group size 64, "int4_asym_g64" - as previous but asymmetric w/ zero-point, `f32` - means no compression.
compression_ratio (`Optional[float]`, defaults to `None`):
Compression ratio between primary and backup precision (only relevant to INT4).
stateful (`bool`, defaults to `True`):
Produce stateful model where all kv-cache inputs and outputs are hidden in the model and are not exposed as model inputs and outputs. Applicable only for decoder models.
**kwargs_shapes (`Dict`):
Shapes to use during inference. This argument allows to override the default shapes used during the ONNX export.
Example usage:
```python
>>> from optimum.exporters.openvino import main_export
>>> main_export("gpt2", output="gpt2_onnx/")
```
"""
if (
compression_option is not None
and compression_option != "fp16"
and compression_option != "fp32"
and not is_nncf_available()
):
raise ImportError(
f"Compression of the weights to {compression_option} requires nncf, please install it with `pip install nncf`"
)
model_kwargs = model_kwargs or {}
output = Path(output)
if not output.exists():
output.mkdir(parents=True)
original_task = task
task = TasksManager.map_from_synonym(task)
# Patch the modules to export of GPTQ models w/o GPU
do_gptq_patching = False
try:
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=trust_remote_code)
model_type = config.model_type.replace("_", "-")
config_dict = config.to_dict()
quantization_config = config_dict.get("quantization_config", None)
do_gptq_patching = quantization_config and quantization_config["quant_method"] == "gptq"
except Exception:
model_type = None
pass
if do_gptq_patching:
import torch
torch.set_default_dtype(torch.float32)
orig_cuda_check = torch.cuda.is_available
torch.cuda.is_available = lambda: True
from optimum.gptq import GPTQQuantizer
orig_post_init_model = GPTQQuantizer.post_init_model
def post_init_model(self, model):
from auto_gptq import exllama_set_max_input_length
class StoreAttr(object):
pass
model.quantize_config = StoreAttr()
model.quantize_config.desc_act = self.desc_act
if self.desc_act and not self.disable_exllama and self.max_input_length is not None:
model = exllama_set_max_input_length(model, self.max_input_length)
return model
GPTQQuantizer.post_init_model = post_init_model
framework = TasksManager.determine_framework(model_name_or_path, subfolder=subfolder, framework=framework)
# get the shapes to be used to generate dummy inputs
input_shapes = {}
for input_name in DEFAULT_DUMMY_SHAPES.keys():
input_shapes[input_name] = (
kwargs_shapes[input_name] if input_name in kwargs_shapes else DEFAULT_DUMMY_SHAPES[input_name]
)
if task == "auto":
try:
task = TasksManager.infer_task_from_model(model_name_or_path)
except KeyError as e:
raise KeyError(
f"The task could not be automatically inferred. Please provide the argument --task with the relevant task from {', '.join(TasksManager.get_all_tasks())}. Detailed error: {e}"
)
except RequestsConnectionError as e:
raise RequestsConnectionError(
f"The task could not be automatically inferred as this is available only for models hosted on the Hugging Face Hub. Please provide the argument --task with the relevant task from {', '.join(TasksManager.get_all_tasks())}. Detailed error: {e}"
)
loading_kwargs = {}
if is_transformers_version(">=", "4.36") and model_type in SDPA_ARCHS_ONNX_EXPORT_NOT_SUPPORTED:
loading_kwargs["attn_implementation"] = "eager"
model = TasksManager.get_model_from_task(
task,
model_name_or_path,
subfolder=subfolder,
revision=revision,
cache_dir=cache_dir,
use_auth_token=use_auth_token,
local_files_only=local_files_only,
force_download=force_download,
trust_remote_code=trust_remote_code,
framework=framework,
device=device,
**loading_kwargs,
)
custom_architecture = False
is_stable_diffusion = "stable-diffusion" in task
model_type = "stable-diffusion" if is_stable_diffusion else model.config.model_type.replace("_", "-")
if not is_stable_diffusion:
if model_type in TasksManager._UNSUPPORTED_CLI_MODEL_TYPE:
raise ValueError(
f"{model_type} is not supported yet. Only {TasksManager._SUPPORTED_CLI_MODEL_TYPE} are supported. "
f"If you want to support {model_type} please propose a PR or open up an issue."
)
if model.config.model_type.replace("-", "_") not in TasksManager.get_supported_model_type_for_task(
task, exporter="onnx"
):
custom_architecture = True
if custom_architecture and custom_onnx_configs is None:
raise ValueError(
"Trying to export a model with a custom architecture, but no custom onnx configuration was passed as `custom_onnx_configs`. Please refer to https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#custom-export-of-transformers-models for an example on how to export custom models."
)
if custom_architecture and original_task == "auto":
raise ValueError(
f'Automatic task detection is not supported with custom architectures. Please specify the `task` argument. Suggestion: task="{task}" (or task="{task}-with-past" if the model is decoder-based and supports KV cache)'
)
if (
not custom_architecture
and not is_stable_diffusion
and task + "-with-past" in TasksManager.get_supported_tasks_for_model_type(model_type, "onnx")
):
if original_task == "auto": # Make -with-past the default if --task was not explicitely specified
task = task + "-with-past"
else:
logger.info(
f"The task `{task}` was manually specified, and past key values will not be reused in the decoding."
f" if needed, please pass `--task {task}-with-past` to export using the past key values."
)
if original_task == "auto":
synonyms_for_task = sorted(TasksManager.synonyms_for_task(task))
if synonyms_for_task:
synonyms_for_task = ", ".join(synonyms_for_task)
possible_synonyms = f" (possible synonyms are: {synonyms_for_task})"
else:
possible_synonyms = ""
logger.info(f"Automatic task detection to {task}{possible_synonyms}.")
task_support_stateful = ensure_export_task_support_stateful(task)
stateful = stateful and task_support_stateful
preprocessors = maybe_load_preprocessors(
model_name_or_path, subfolder=subfolder, trust_remote_code=trust_remote_code
)
onnx_config, models_and_onnx_configs = optimum_main._get_submodels_and_onnx_configs(
model=model,
task=task,
monolith=False,
custom_onnx_configs=custom_onnx_configs if custom_onnx_configs is not None else {},
custom_architecture=custom_architecture,
fn_get_submodels=fn_get_submodels,
preprocessors=preprocessors,
_variant="default",
legacy=False,
)
if compression_option is None:
num_parameters = model.num_parameters() if not is_stable_diffusion else model.unet.num_parameters()
if num_parameters >= _MAX_UNCOMPRESSED_SIZE:
if is_nncf_available():
compression_option = "int8"
logger.info("The model weights will be quantized to int8.")
else:
logger.warning(
"The model will be converted with no weights quantization. Quantization of the weights to int8 requires nncf."
"please install it with `pip install nncf`"
)
if not is_stable_diffusion:
needs_pad_token_id = (
isinstance(onnx_config, OnnxConfigWithPast)
and getattr(model.config, "pad_token_id", None) is None
and task in ["text-classification"]
)
tokenizer = next(
(preprocessor for preprocessor in preprocessors if isinstance(preprocessor, PreTrainedTokenizerBase)), None
)
if needs_pad_token_id:
if pad_token_id is not None:
model.config.pad_token_id = pad_token_id
elif tokenizer is not None:
try:
model.config.pad_token_id = tokenizer.pad_token_id
except Exception:
raise ValueError(
"Could not infer the pad token id, which is needed in this case, please provide it with the --pad_token_id argument"
)
# Saving the model config and preprocessor as this is needed sometimes.
model.config.save_pretrained(output)
generation_config = getattr(model, "generation_config", None)
if generation_config is not None:
generation_config.save_pretrained(output)
maybe_save_preprocessors(model_name_or_path, output)
if tokenizer is not None and is_openvino_tokenizers_available():
try:
export_tokenizer(tokenizer, output)
except Exception as exception:
logger.warning(
"Could not load tokenizer using specified model ID or path. OpenVINO tokenizer/detokenizer "
f"models won't be generated. Exception: {exception}"
)
if model.config.is_encoder_decoder and task.startswith("text-generation"):
raise ValueError(
f"model.config.is_encoder_decoder is True and task is `{task}`, which are incompatible. If the task was auto-inferred, please fill a bug report"
f"at https://github.com/huggingface/optimum, if --task was explicitely passed, make sure you selected the right task for the model,"
f" referring to `optimum.exporters.tasks.TaskManager`'s `_TASKS_TO_AUTOMODELS`."
)
files_subpaths = ["openvino_" + model_name + ".xml" for model_name in models_and_onnx_configs.keys()]
else:
# save the subcomponent configuration
for model_name in models_and_onnx_configs:
subcomponent = models_and_onnx_configs[model_name][0]
if hasattr(subcomponent, "save_config"):
subcomponent.save_config(output / model_name)
elif hasattr(subcomponent, "config") and hasattr(subcomponent.config, "save_pretrained"):
subcomponent.config.save_pretrained(output / model_name)
files_subpaths = [os.path.join(name_dir, OV_XML_FILE_NAME) for name_dir in models_and_onnx_configs]
# Saving the additional components needed to perform inference.
model.scheduler.save_pretrained(output.joinpath("scheduler"))
feature_extractor = getattr(model, "feature_extractor", None)
if feature_extractor is not None:
feature_extractor.save_pretrained(output.joinpath("feature_extractor"))
tokenizer = getattr(model, "tokenizer", None)
if tokenizer is not None and is_openvino_tokenizers_available():
tokenizer.save_pretrained(output.joinpath("tokenizer"))
export_tokenizer(tokenizer, output)
tokenizer_2 = getattr(model, "tokenizer_2", None)
if tokenizer_2 is not None and is_openvino_tokenizers_available():
tokenizer_2.save_pretrained(output.joinpath("tokenizer_2"))
export_tokenizer(tokenizer, output, suffix="_2")
model.save_config(output)
export_models(
models_and_onnx_configs=models_and_onnx_configs,
output_dir=output,
output_names=files_subpaths,
input_shapes=input_shapes,
device=device,
compression_option=compression_option,
compression_ratio=compression_ratio,
stateful=stateful,
model_kwargs=model_kwargs,
)
# Unpatch modules after GPTQ export
if do_gptq_patching:
torch.cuda.is_available = orig_cuda_check
GPTQQuantizer.post_init_model = orig_post_init_model