forked from huggingface/optimum-intel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenvino.py
296 lines (262 loc) · 12.6 KB
/
openvino.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines the command line for the export with OpenVINO."""
import logging
import sys
from pathlib import Path
from typing import TYPE_CHECKING, Optional
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from ...exporters import TasksManager
from ...intel.utils.import_utils import DIFFUSERS_IMPORT_ERROR, is_diffusers_available
from ..base import BaseOptimumCLICommand, CommandInfo
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from argparse import ArgumentParser, Namespace, _SubParsersAction
def parse_args_openvino(parser: "ArgumentParser"):
required_group = parser.add_argument_group("Required arguments")
required_group.add_argument(
"-m", "--model", type=str, required=True, help="Model ID on huggingface.co or path on disk to load model from."
)
required_group.add_argument(
"output", type=Path, help="Path indicating the directory where to store the generated OV model."
)
optional_group = parser.add_argument_group("Optional arguments")
optional_group.add_argument(
"--task",
default="auto",
help=(
"The task to export the model for. If not specified, the task will be auto-inferred based on the model. Available tasks depend on the model, but are among:"
f" {str(TasksManager.get_all_tasks())}. For decoder models, use `xxx-with-past` to export the model using past key values in the decoder."
),
)
optional_group.add_argument(
"--cache_dir", type=str, default=HUGGINGFACE_HUB_CACHE, help="Path indicating where to store cache."
)
optional_group.add_argument(
"--framework",
type=str,
choices=["pt", "tf"],
default=None,
help=(
"The framework to use for the export. If not provided, will attempt to use the local checkpoint's original framework or what is available in the environment."
),
)
optional_group.add_argument(
"--trust-remote-code",
action="store_true",
help=(
"Allows to use custom code for the modeling hosted in the model repository. This option should only be set for repositories you trust and in which "
"you have read the code, as it will execute on your local machine arbitrary code present in the model repository."
),
)
optional_group.add_argument(
"--pad-token-id",
type=int,
default=None,
help=(
"This is needed by some models, for some tasks. If not provided, will attempt to use the tokenizer to guess it."
),
)
optional_group.add_argument("--fp16", action="store_true", help="Compress weights to fp16")
optional_group.add_argument("--int8", action="store_true", help="Compress weights to int8")
optional_group.add_argument(
"--weight-format",
type=str,
choices=["fp32", "fp16", "int8", "int4", "int4_sym_g128", "int4_asym_g128", "int4_sym_g64", "int4_asym_g64"],
default=None,
help=(
"The weight format of the exporting model, e.g. f32 stands for float32 weights, f16 - for float16 weights, i8 - INT8 weights, int4_* - for INT4 compressed weights."
),
)
optional_group.add_argument(
"--ratio",
type=float,
default=None,
help=(
"Compression ratio between primary and backup precision. In the case of INT4, NNCF evaluates layer sensitivity and keeps the most impactful layers in INT8"
"precision (by default 20%% in INT8). This helps to achieve better accuracy after weight compression."
),
)
optional_group.add_argument(
"--sym",
action="store_true",
default=None,
help=("Whether to apply symmetric quantization"),
)
optional_group.add_argument(
"--group-size",
type=int,
default=None,
help=("The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization."),
)
optional_group.add_argument(
"--dataset",
type=str,
default=None,
help=(
"The dataset used for data-aware compression or quantization with NNCF. "
"You can use the one from the list ['wikitext2','c4','c4-new','ptb','ptb-new'] for LLLMs "
"or ['conceptual_captions','laion/220k-GPT4Vision-captions-from-LIVIS','laion/filtered-wit'] for diffusion models."
),
)
optional_group.add_argument(
"--disable-stateful",
action="store_true",
help=(
"Disable stateful converted models, stateless models will be generated instead. Stateful models are produced by default when this key is not used. "
"In stateful models all kv-cache inputs and outputs are hidden in the model and are not exposed as model inputs and outputs. "
"If --disable-stateful option is used, it may result in sub-optimal inference performance. "
"Use it when you intentionally want to use a stateless model, for example, to be compatible with existing "
"OpenVINO native inference code that expects kv-cache inputs and outputs in the model."
),
)
optional_group.add_argument(
"--disable-convert-tokenizer",
action="store_true",
help="Do not add converted tokenizer and detokenizer OpenVINO models.",
)
optional_group.add_argument(
"--convert-tokenizer",
action="store_true",
help="[Deprecated] Add converted tokenizer and detokenizer with OpenVINO Tokenizers.",
)
optional_group.add_argument(
"--library",
type=str,
choices=["transformers", "diffusers", "timm", "sentence_transformers"],
default=None,
help=("The library on the model. If not provided, will attempt to infer the local checkpoint's library"),
)
class OVExportCommand(BaseOptimumCLICommand):
COMMAND = CommandInfo(name="openvino", help="Export PyTorch models to OpenVINO IR.")
def __init__(
self,
subparsers: "_SubParsersAction",
args: Optional["Namespace"] = None,
command: Optional["CommandInfo"] = None,
from_defaults_factory: bool = False,
parser: Optional["ArgumentParser"] = None,
):
super().__init__(
subparsers, args=args, command=command, from_defaults_factory=from_defaults_factory, parser=parser
)
self.args_string = " ".join(sys.argv[3:])
@staticmethod
def parse_args(parser: "ArgumentParser"):
return parse_args_openvino(parser)
def run(self):
from ...exporters.openvino.__main__ import main_export
from ...intel.openvino.configuration import _DEFAULT_4BIT_CONFIGS, OVConfig
if self.args.fp16:
logger.warning(
"`--fp16` option is deprecated and will be removed in a future version. Use `--weight-format` instead."
)
self.args.weight_format = "fp16"
if self.args.int8:
logger.warning(
"`--int8` option is deprecated and will be removed in a future version. Use `--weight-format` instead."
)
self.args.weight_format = "int8"
if self.args.weight_format is None:
ov_config = None
elif self.args.weight_format in {"fp16", "fp32"}:
ov_config = OVConfig(dtype=self.args.weight_format)
else:
is_int8 = self.args.weight_format == "int8"
# For int4 quantization if not parameter is provided, then use the default config if exist
if (
not is_int8
and self.args.ratio is None
and self.args.group_size is None
and self.args.sym is None
and self.args.model in _DEFAULT_4BIT_CONFIGS
):
quantization_config = _DEFAULT_4BIT_CONFIGS[self.args.model]
else:
quantization_config = {
"bits": 8 if is_int8 else 4,
"ratio": 1 if is_int8 else (self.args.ratio or 0.8),
"sym": self.args.sym or False,
"group_size": -1 if is_int8 else self.args.group_size,
}
if self.args.weight_format in {"int4_sym_g128", "int4_asym_g128", "int4_sym_g64", "int4_asym_g64"}:
logger.warning(
f"--weight-format {self.args.weight_format} is deprecated, possible choices are fp32, fp16, int8, int4"
)
quantization_config["sym"] = "asym" not in self.args.weight_format
quantization_config["group_size"] = 128 if "128" in self.args.weight_format else 64
quantization_config["dataset"] = self.args.dataset
ov_config = OVConfig(quantization_config=quantization_config)
library_name = TasksManager.infer_library_from_model(self.args.model, library_name=self.args.library)
if library_name == "sentence_transformers" and self.args.library is None:
logger.warning(
"Library name is not specified. There are multiple possible variants: `sentence_transformers`, `transformers`."
"`transformers` will be selected. If you want to load your model with the `sentence-transformers` library instead, please set --library sentence_transformers"
)
library_name = "transformers"
if self.args.convert_tokenizer:
logger.warning("`--convert-tokenizer` option is deprecated. Tokenizer will be converted by default.")
if (
library_name == "diffusers"
and ov_config
and ov_config.quantization_config
and ov_config.quantization_config.dataset is not None
):
if not is_diffusers_available():
raise ValueError(DIFFUSERS_IMPORT_ERROR.format("Export of diffusers models"))
from diffusers import DiffusionPipeline
diffusers_config = DiffusionPipeline.load_config(self.args.model)
class_name = diffusers_config.get("_class_name", None)
if class_name == "LatentConsistencyModelPipeline":
from optimum.intel import OVLatentConsistencyModelPipeline
model_cls = OVLatentConsistencyModelPipeline
elif class_name == "StableDiffusionXLPipeline":
from optimum.intel import OVStableDiffusionXLPipeline
model_cls = OVStableDiffusionXLPipeline
elif class_name == "StableDiffusionPipeline":
from optimum.intel import OVStableDiffusionPipeline
model_cls = OVStableDiffusionPipeline
else:
raise NotImplementedError(f"Quantization in hybrid mode isn't supported for class {class_name}.")
model = model_cls.from_pretrained(
self.args.model, export=True, quantization_config=ov_config.quantization_config
)
model.save_pretrained(self.args.output)
if self.args.disable_convert_tokenizer:
return
# avoid import when using other exporters (IPEX, INC)
from ...exporters.openvino.convert import export_tokenizer
output = Path(self.args.output)
tokenizer = getattr(model, "tokenizer", None)
if tokenizer is not None:
export_tokenizer(tokenizer, output / "tokenizer")
tokenizer_2 = getattr(model, "tokenizer_2", None)
if tokenizer_2 is not None:
export_tokenizer(tokenizer_2, output / "tokenizer_2")
else:
# TODO : add input shapes
main_export(
model_name_or_path=self.args.model,
output=self.args.output,
task=self.args.task,
framework=self.args.framework,
cache_dir=self.args.cache_dir,
trust_remote_code=self.args.trust_remote_code,
pad_token_id=self.args.pad_token_id,
ov_config=ov_config,
stateful=not self.args.disable_stateful,
convert_tokenizer=not self.args.disable_convert_tokenizer,
library_name=library_name,
# **input_shapes,
)