-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtesting.py
44 lines (33 loc) · 1.24 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import data_transform
import numpy as np
import matplotlib.pyplot as plt
from matrix_test import random_matrix
from data_streaming import data_prepare, data_stream, data_cleanup, stream_length
def plot_frequency_bands(filtered_data):
"""
Plot the frequency bands using matplotlib.
Args:
filtered_data: dict of filtered data in different frequency bands
"""
bands = list(filtered_data.keys())
values = [np.mean(v) if isinstance(v, (list, np.ndarray)) else v for v in filtered_data.values()]
plt.figure(figsize=(10, 6))
plt.bar(bands, values, color=['b', 'g', 'r', 'c', 'm'])
plt.xlabel('Frequency Bands')
plt.ylabel('Average Frequency')
plt.title('Average Frequency in Different EEG Bands')
plt.show()
def main():
timeElapsed = 0
totalTime = 120 #length of time to collect data for in seconds
board = data_prepare()
while timeElapsed < totalTime:
someData = data_stream(board, stream_length)
filtered_data = data_transform.data_transform(someData)
for key in filtered_data:
print(key, ": ", filtered_data[key])
plot_frequency_bands(filtered_data)
timeElapsed += stream_length
data_cleanup()
if __name__ == "__main__":
main()