-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsoc.sna.R
418 lines (335 loc) · 15.5 KB
/
soc.sna.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#### Functions for social network analysis
############################################################
####### Plotting:
### Problemer
# Vi kan ikke have mere end 1 af hver slags skala - det er særligt irriterende med size,
# fordi den skal bruges til både edges og vertices.
# Hadley siger at han synes det er en dårlig ide at have mere end en scale... træls!
# En mulig løsning er at dele scales op imellem edges og vertices
# edges alpha, linetype og colour
# vertex: size, fill, shape
# Text
# Desværre kan vi ikke have både vertex.fill og vertex.shape - på samme tid - det skyldes to ting - 1 det er ikke alle shapes der har fill og 2 der er noget med legend
# Der skal være assigned en vægt til netværket...
# graph <- net
# lay <- layout.fruchterman.reingold(graph)
# vertex.coord <- lay
# vertex.color="black"
# vertex.fill="grey60"
# vertex.fill=data$køn
# vertex.shape=21
# vertex.size=1:170
# vertex.alpha=1
# edge.color="black"
# edge.alpha=0.2
# text.size=3
# text.colour="black"
# text.alpha=1
# edge.line="twodash"
# edge.size=1
gplot <- function(graph, vertex.coord=layout.fruchterman.reingold(graph),
vertex.color="black", vertex.fill="grey60", vertex.shape=21, vertex.size=3, vertex.alpha=1,
edge.color="black", edge.alpha=0.2, edge.size=1, edge.line="solid",
text.size=3, text.colour="black", text.alpha=1){
rownames(vertex.coord) <- V(graph)$name
vertex.coord <- as.data.frame(vertex.coord, rownames(vertex.coord))
colnames(vertex.coord) <- c("x", "y")
e.l <- data.frame(get.edgelist(graph))
e.l <- cbind(e.l, E(graph)$weight)
mat <- as.data.frame(matrix(ncol=5, nrow=nrow(e.l)))
colnames(mat) <- c("start.x", "start.y", "slut.x", "slut.y", "weight")
for(i in (1:nrow(e.l))){
start <- as.character(e.l[i,1])
start.coord <- vertex.coord[rownames(vertex.coord)==start,]
slut <- as.character(e.l[i,2])
slut.coord <- vertex.coord[rownames(vertex.coord)==slut,]
mat[i,1:2] <- start.coord
mat[i,3:4] <- slut.coord
mat[i,5] <- e.l[i,3]
}
## The vertex matrix
vertex.coord$id <- rownames(vertex.coord)
# Fill
if(length(vertex.fill)==1){
vertex.coord$vertex.fill <- as.factor(rep(1, nrow(vertex.coord)))
}else{
vertex.coord$vertex.fill <- vertex.fill
}
# Shape
if(length(vertex.shape)==1){
vertex.coord$vertex.shape <- as.factor(rep(1, nrow(vertex.coord)))
}else{
vertex.coord$vertex.shape <- vertex.shape
}
# Size
if(length(vertex.size)==1){
vertex.coord$vertex.size <- rep(1, nrow(vertex.coord))
}else{
vertex.coord$vertex.size <- vertex.size
}
## Edges
edge.mat <- as.data.frame(mat)
# Color
if(length(edge.color)==1){
edge.mat$edge.color <- as.factor(rep(1, nrow(edge.mat)))
}else{
edge.mat$edge.color <- edge.color
}
# Alpha
if(length(edge.alpha)==1){
edge.mat$edge.alpha <- rep(1, nrow(edge.mat))
}else{
edge.mat$edge.alpha <- edge.alpha
}
# Linetype
if(length(edge.line)==1){
edge.mat$edge.line <- as.character(rep(edge.line, nrow(edge.mat)))
}else{
edge.mat$edge.line <- edge.line
}
## Plotting
pnet <- ggplot()
# Text
pnet <- pnet + geom_text(data=vertex.coord, aes(x=x, y=y, label=id), size=text.size, alpha=text.alpha, color=text.colour)
# Vertex
pnet <- pnet + geom_point(data=vertex.coord, aes(x=x, y=y, size=vertex.size, fill=vertex.fill, shape=vertex.shape), alpha=vertex.alpha, color=vertex.color)
# Shape
if (length(vertex.shape)==1) pnet <- pnet + scale_shape_manual(values=vertex.shape, guide="none")
# Fill
if (length(vertex.fill)==1) pnet <- pnet + scale_fill_manual(values=as.character(vertex.fill), guide="none")
# Size
if (length(vertex.size)==1) pnet <- pnet + scale_size(range=c(vertex.size,vertex.size), guide="none")
# Edges
pnet <- pnet + geom_segment(aes(x=start.x, y=start.y, xend=slut.x, yend = slut.y, color=edge.color, alpha=edge.alpha, linetype=as.character(edge.line)), data=edge.mat, size=edge.size)
# Color
if (length(edge.color)==1) pnet <- pnet + scale_colour_manual(values=as.character(edge.color), guide="none")
# Alpha
if (length(edge.alpha)==1) pnet <- pnet + scale_alpha(range=c(edge.alpha, edge.alpha), guide="none")
# Linetype
if (length(edge.line)==1) pnet <- pnet + scale_linetype_identity(guide="none")
# Theme
pnet <- pnet + theme_bw()
# Legend
if (length(vertex.shape)==1 & length(vertex.fill)!=1) pnet <- pnet + guides(fill = guide_legend(override.aes = list(shape = vertex.shape, size=3))) + labs(fill="")
# pnet <- pnet + guides(fill = guide_legend(override.aes = list(shape = vertex.shape, size=3))) + labs(fill="")
pnet
# This function plots igraph objects. It requires a graph object from igraph,
# and a vertex.coord object from a layout function
# The following vertex attributes can be mapped by variables of proper length:
# Vertex.size, vertex.fill and vertex.shape
# The following edge attributes can be mapped by variables of proper length:
# edge.alpha, edge.linetype and edge.color
# All other attributes can only take one value
}
###############################################################################
######## Analysis
network.by.variable <- function(net, variabel){
variabel <- as.factor(variabel)
dele <- levels(variabel)
output <- matrix(nrow=20, ncol=length(dele)) # Output matrix
for ( i in 1:length(dele)){
del <- dele[i]
del.ind <- which(variabel==del)
del.not <- which(variabel!=del)
net.del <- net - del.not
# Antal Vertices
Number.of.vertices <- length(del.ind)
# Antal edges
Number.of.edges <- sum(degree(net)[del.ind])
# Average degree
Average.degree <- round(Number.of.edges/Number.of.vertices, 1)
# Part density i 1000
Part.density <- round(Number.of.edges/((Number.of.vertices*(vcount(net)-1)/2))*1000, 1)
# Clusters in part
Number.of.clusters.in.del <- clusters(net.del)$no
# Average path length total network
sp <- shortest.paths(net)
ind.av.sp <- rowSums(sp)[del.ind]/ncol(sp)
Average.path.length <- round(sum(ind.av.sp)/length(del.ind),1)
# Average path length within group
sp.del <- shortest.paths(net)[del.ind,del.ind]
ind.av.sp.del <- rowSums(sp.del)/length(del.ind)
Average.path.length.del <- round(sum(ind.av.sp.del)/length(del.ind),1)
# Longest path within group
Longest.path.del <- max(sp.del)
# Largest number of degrees
Largest.degree <- max(degree(net)[del.ind])
# Largest degree in part
Largest.degree.del <-max(degree(net.del))
# Largest 2 neighborhoods
Largest.2.neighborhood <- max(neighborhood.size(net, 2)[del.ind])
# Largest 3 neighborhoods
Largest.3.neighborhood <- max(neighborhood.size(net, 3)[del.ind])
# Average closeness whole network * 10000
Average.closeness.network <- round(sum(closeness(net)[del.ind])/length(del.ind) * 10000, 1)
# Average closeness part
Average.closeness.part <- round(sum(closeness(net.del))/length(del.ind) * 10000, 1)
# Average betweenness whole network
Average.betweenness.network <- round(sum(betweenness(net)[del.ind])/length(del.ind))
# Average betweeness part
Average.betweenness.part <- round(sum(betweenness(net.del))/length(del.ind))
# Maximum betweeness whole network
Maximum.betweenness <- max(betweenness(net)[del.ind])
# Maximum closeness whole network * 10000
Maximum.closeness <- round(max(closeness(net)[del.ind]) * 10000, 1)
# Average eigenvector centrality * 1000
Average.eigen.network <- round(sum(evcent(net)$vector[del.ind])/length(del.ind) * 1000, 1)
# Maximum eigenvector centrality
Maximum.eigen <- round(max(evcent(net)$vector[del.ind])* 1000, 1)
del.stat <- c(Number.of.vertices, Number.of.edges, Average.degree, Part.density, Number.of.clusters.in.del,
Average.path.length, Average.path.length.del, Longest.path.del, Largest.degree, Largest.degree.del,
Largest.2.neighborhood, Largest.3.neighborhood,
Average.closeness.network, Average.closeness.part, Maximum.closeness,
Average.betweenness.network, Average.betweenness.part, Maximum.betweenness,
Average.eigen.network, Maximum.eigen)
output[,i] <- round(del.stat, 1)
}
colnames(output) <- dele
rownames(output) <- c("Number of vertices", "Number of edges", "Average degree", "Part density (o/oo)", "Number of clusters in part",
"Average path length", "Average path length in part", "Longest path in part", "Highest degree", "Highest degree in part",
"Largest 2. neighborhood", "Largest 3. neighborhood",
"Average closeness", "Average closeness in part", "Maximum closeness",
"Average betweeness", "Average betweenness in part", "Maximum betweenness",
"Average eigencentrality", "Maximum eigencentrality")
return(output)
# Net er et igraph object
# Variabel er en factor i samme længde og orden som den adjacency matrice net er lavet fra
}
############# Endnu en beskrivende funktion
describe.network <- function(graph, variabel, org.data){
#ALLE
between <- betweenness(graph)
neighborhood.size.3 <- neighborhood.size(graph, 3)
degrees <- degree(graph)
core.com <- clusters(graph)
core.com.mem <- core.com$membership==which.max(core.com$csize)
nvertex.all <- vcount(graph)
nedges.all <- ecount(graph)
percentage.in.largest.com <- sum(core.com.mem)/nvertex.all * 100
Average.degree <- sum(degrees)/nvertex.all
Average.betweenness <- sum(between)/nvertex.all
Average.3.neighborhood.size <- sum(neighborhood.size.3)/nvertex.all
result.matrix <- as.data.frame(matrix(nrow = 6, ncol=1+nlevels(variabel)))
res.all <- c(nvertex.all, nedges.all, percentage.in.largest.com, Average.degree, Average.betweenness, Average.3.neighborhood.size)
result.matrix[,1] <- res.all
levels.variabel <- levels(variabel)
# Del
for( i in 1:nlevels(variabel)){
graph.part <- graph - which(variabel!=levels.variabel[i])
part.ind <- which(variabel==levels.variabel[i])
between.part <- between[part.ind]
neighborhood.size.3.part <- neighborhood.size.3[part.ind]
degrees.part <- degrees[part.ind]
core.com.mem.part <- core.com.mem[part.ind]
nvertex.part <- vcount(graph.part)
nedges.part <- ecount(graph.part)
percentage.in.largest.com.part <- sum(core.com.mem.part)/nvertex.part * 100
Average.degree.part <- sum(degrees.part)/nvertex.part
Average.betweenness.part <- sum(between.part)/nvertex.part
Average.3.neighborhood.size.part <- sum(neighborhood.size.3.part)/nvertex.part
res.part <- c(nvertex.part, nedges.part, percentage.in.largest.com.part, Average.degree.part, Average.betweenness.part, Average.3.neighborhood.size.part)
result.matrix[,i+1] <- res.part
}
colnames(result.matrix) <- c("All", levels.variabel)
rownames(result.matrix) <- c("Corporations", "Ties", "% in central component", "Average degree", "Average betweeness", "Average 3rd neighborhoodsize")
round(result.matrix, 1)
}
######## Overlapping Social Circles by Alba and Kadushin
# Der er stadig noget bøvl med at trække 1 fra de overlappende hoods
circles <- function(graph, neighborhood=2, mode="total"){
n2 <- neighborhood(graph, order=neighborhood)
###
individual.hoodoverlap <- function(n2, individual, result=1){
hood <- n2[[individual]]
res <- vector(length=length(n2))
for (j in 1:length(n2)){
hood2 <- n2[[j]]
# Andel af egne forbindelser man deler med hood2
hood.size <- length(hood) #-1
hood2.size <- length(hood2) #-1
hood.overlap <- sum(hood %in% hood2) - sum(hood2 == j)
hood.total.size <- hood.size + hood2.size - hood.overlap # NB er det her korrekt!
overlap.total <- hood.overlap/hood.total.size
overlap.own <- hood.overlap/hood.size
overlap.other <- hood.overlap/hood2.size
ind.res <- c(overlap.total, overlap.own, overlap.other, hood.total.size, hood.overlap)
res[j] <- ind.res[result]
}
return(res)
}
############# Resultater
if (identical(mode, "total")==TRUE){
circle.mat <- matrix(nrow=length(n2), ncol=length(n2))
pb <- txtProgressBar(min = 0, max = length(n2), style=3)
for (i in 1:length(n2)){
circle.mat[,i] <- individual.hoodoverlap(n2, i, result=1)
setTxtProgressBar(pb, i, label=paste( round(i/length(n2)*100, 0), "% ready!"))
}
close(pb)
}
if (identical(mode, "own")==TRUE){
circle.mat <- matrix(nrow=length(n2), ncol=length(n2))
pb <- txtProgressBar(min = 0, max = length(n2), style=3)
for (i in 1:length(n2)){
circle.mat[,i] <- individual.hoodoverlap(n2, i, result=2)
setTxtProgressBar(pb, i, label=paste( round(i/length(n2)*100, 0), "% ready!"))
}
close(pb)
}
if (identical(mode, "other")==TRUE){
circle.mat <- matrix(nrow=length(n2), ncol=length(n2))
pb <- txtProgressBar(min = 0, max = length(n2), style=3)
for (i in 1:length(n2)){
circle.mat[,i] <- individual.hoodoverlap(n2, i, result=3)
setTxtProgressBar(pb, i, label=paste( round(i/length(n2)*100, 0), "% ready!"))
}
close(pb)
}
if (identical(mode, "overlap")==TRUE){
circle.mat <- matrix(nrow=length(n2), ncol=length(n2))
pb <- txtProgressBar(min = 0, max = length(n2), style=3)
for (i in 1:length(n2)){
circle.mat[,i] <- individual.hoodoverlap(n2, i, result=5)
setTxtProgressBar(pb, i, label=paste( round(i/length(n2)*100, 0), "% ready!"))
}
close(pb)
}
rownames(circle.mat) <- V(graph)$name
colnames(circle.mat) <- V(graph)$name
return(circle.mat)
}
########### Describe vertex
who <- function(net, name=NULL, relation.matrix=rel, vertex=NULL){
## Finding the name and vertex number
if( identical(name, NULL)) name <- V(net)$name[vertex]
if( identical(vertex, NULL)) vertex <- which(V(net)$name == name)
# Number of degrees
deg <- degree(net)[vertex]
# Betweenness
between <- round(betweenness(net))
between.vertex <- between[vertex]
between.rank <- which(order(between, decreasing=TRUE)==vertex)
# 2nd Neighborhood
n2 <- neighborhood.size(net, 2)[vertex]
# Closeness
close <- closeness(net)
close.vertex <- close[vertex]
# Closeness rank
close.rank <- which(order(close, decreasing=TRUE)==vertex)
###### Memberships
medlemskaber <- as.character(relation.matrix$ORG_NAVN[relation.matrix$NAVN == name])
positioner <- as.character(relation.matrix$POSITION[relation.matrix$NAVN == name])
mem <- medlemskaber
positioner[positioner == ""] <- "Medlem"
mem <- paste(positioner, ": ", mem)
mem <- mem[order(positioner, decreasing=FALSE)]
cat( "Name: ", name, "\n")
cat( "Degrees: ", deg, "\n")
cat( "2nd Neighborhood: ", n2, "\n")
cat( "Betweenness: ", between.vertex, "\n")
cat( "Betweenness rank: ", between.rank, "\n")
cat( "Closeness: ", close.vertex, "\n")
cat( "Closeness rank: ", close.rank, "\n")
cat( "Memberships: ", "\n")
print(noquote(as.matrix(mem)))
}