forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_MulNoNan.py
47 lines (42 loc) · 1.99 KB
/
test_tf_MulNoNan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
from common.utils.tf_utils import mix_array_with_value
class TestMulNoNan(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'x:0' in inputs_info
assert 'y:0' in inputs_info
x_shape = inputs_info['x:0']
y_shape = inputs_info['y:0']
inputs_data = {}
inputs_data['x:0'] = np.random.randint(-10, 10, x_shape).astype(self.input_type)
inputs_data['x:0'] = mix_array_with_value(inputs_data['x:0'], np.inf)
inputs_data['x:0'] = mix_array_with_value(inputs_data['x:0'], np.nan)
inputs_data['y:0'] = np.random.randint(-10, 10, y_shape).astype(self.input_type) * \
np.random.choice([0.0], y_shape).astype(self.input_type)
return inputs_data
def create_mul_no_nan_net(self, input_shape, input_type):
self.input_type = input_type
tf.compat.v1.reset_default_graph()
with tf.compat.v1.Session() as sess:
x = tf.compat.v1.placeholder(input_type, input_shape, 'x')
y = tf.compat.v1.placeholder(input_type, input_shape, 'y')
tf.raw_ops.MulNoNan(x=x, y=y)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data_basic = [
dict(input_shape=[10, 10], input_type=np.float32),
dict(input_shape=[2, 3, 4], input_type=np.float32),
]
@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit
@pytest.mark.nightly
def test_mul_no_nan_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
self._test(*self.create_mul_no_nan_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)