forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_LeakyRelu.py
43 lines (35 loc) · 1.78 KB
/
test_tf_LeakyRelu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
rng = np.random.default_rng(54654675)
class TestLeakyRelu(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'features:0' in inputs_info, "Test error: inputs_info must contain `features`"
features_shape = inputs_info['features:0']
inputs_data = {}
inputs_data['features:0'] = rng.uniform(-5.0, 5.0, features_shape).astype(self.features_type)
return inputs_data
def create_leaky_relu_net(self, features_shape, features_type, alpha):
self.features_type = features_type
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
features = tf.compat.v1.placeholder(features_type, features_shape, 'features')
tf.raw_ops.LeakyRelu(features=features, alpha=alpha)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
@pytest.mark.parametrize('features_shape', [[], [2], [3, 1], [2, 4, 5]])
@pytest.mark.parametrize('features_type', [np.float16, np.float32, np.float64])
@pytest.mark.parametrize('alpha', [None, -2.0, 0.0, 1.0, 2.0])
@pytest.mark.precommit
@pytest.mark.nightly
def test_leaky_relu(self, features_shape, features_type, alpha,
ie_device, precision, ir_version,
temp_dir, use_legacy_frontend):
self._test(*self.create_leaky_relu_net(features_shape, features_type, alpha),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)