forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_L2Loss.py
46 lines (39 loc) · 1.86 KB
/
test_tf_L2Loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
rng = np.random.default_rng(233453)
class TestL2Loss(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'input:0' in inputs_info, "Test error: inputs_info must contain `input`"
input_shape = inputs_info['input:0']
inputs_data = {}
inputs_data['input:0'] = rng.uniform(-2.0, 2.0, input_shape).astype(self.input_type)
return inputs_data
def create_l2_loss_net(self, input_shape, input_type):
self.input_type = input_type
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
input = tf.compat.v1.placeholder(input_type, input_shape, 'input')
tf.raw_ops.L2Loss(t=input, name='l2_loss')
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
@pytest.mark.parametrize("input_shape", [[], [2], [1, 2], [2, 3, 4]])
@pytest.mark.parametrize("input_type", [np.float16, np.float32, np.float64])
@pytest.mark.precommit
@pytest.mark.nightly
def test_l2_loss_basic(self, input_shape, input_type,
ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
custom_eps = None
if input_type == np.float16:
custom_eps = 3 * 1e-3
if ie_device == 'GPU' and input_shape == []:
pytest.skip("150321: Accessing out-of-range dimension on GPU")
self._test(*self.create_l2_loss_net(input_shape, input_type),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend, custom_eps=custom_eps)