forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_ExpandDims.py
94 lines (73 loc) · 3.63 KB
/
test_tf_ExpandDims.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
rng = np.random.default_rng(62362)
class TestExpandDims(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
# generate elements so that the input tensor may contain repeating elements
assert 'input:0' in inputs_info, "Test error: inputs_info must contain `input`"
x_shape = inputs_info['input:0']
inputs_data = {}
inputs_data['input:0'] = np.random.randint(-10, 10, x_shape).astype(np.float32)
return inputs_data
def create_expand_dims_net(self, input_shape, axis):
tf.compat.v1.reset_default_graph()
with tf.compat.v1.Session() as sess:
input = tf.compat.v1.placeholder(tf.float32, input_shape, 'input')
axis = tf.constant(axis, dtype=tf.int32)
tf.raw_ops.ExpandDims(input=input, axis=axis)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_basic = [
dict(input_shape=[], axis=0),
dict(input_shape=[2, 3], axis=1),
dict(input_shape=[2, 3, 5], axis=-2),
]
@pytest.mark.parametrize("params", test_basic)
@pytest.mark.nightly
@pytest.mark.precommit
def test_expand_dims_basic(self, params, ie_device, precision, ir_version, temp_dir, use_legacy_frontend):
self._test(*self.create_expand_dims_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)
class TestExpandDimsComplex(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
# generate elements so that the input tensor may contain repeating elements
assert 'param_real:0' in inputs_info
assert 'param_imag:0' in inputs_info
input_shape = inputs_info['param_real:0']
inputs_data = {}
inputs_data['param_real:0'] = rng.integers(-10.0, 10.0, input_shape).astype(np.float32)
inputs_data['param_imag:0'] = rng.integers(-10.0, 10.0, input_shape).astype(np.float32)
return inputs_data
def create_expand_dims_complex_net(self, axis_dtype, input_shape, axis):
tf.compat.v1.reset_default_graph()
with tf.compat.v1.Session() as sess:
param_real = tf.compat.v1.placeholder(np.float32, input_shape, 'param_real')
param_imag = tf.compat.v1.placeholder(np.float32, input_shape, 'param_imag')
complex = tf.raw_ops.Complex(real=param_real, imag=param_imag)
axis = tf.constant(axis, dtype=axis_dtype)
result = tf.raw_ops.ExpandDims(input=complex, axis=axis)
tf.raw_ops.Real(input=result)
tf.raw_ops.Imag(input=result)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_basic = [
dict(input_shape=[], axis=0),
dict(input_shape=[2, 3], axis=1),
dict(input_shape=[2, 3, 4], axis=-1),
dict(input_shape=[2, 6, 5], axis=-2),
]
@pytest.mark.parametrize("axis_dtype", [np.int32, np.int64])
@pytest.mark.parametrize("op_args", test_basic)
@pytest.mark.nightly
@pytest.mark.precommit
def test_expand_dims_basic_complex(self, axis_dtype, op_args, ie_device, precision, ir_version, temp_dir, use_legacy_frontend):
self._test(*self.create_expand_dims_complex_net(axis_dtype, **op_args),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)