forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_Conv3DBackprop.py
91 lines (75 loc) · 5.02 KB
/
test_tf_Conv3DBackprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright (C) 2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from common.tf_layer_test_class import CommonTFLayerTest
# Testing operation Conv3DBackpropInputV2
# Documentation: https://www.tensorflow.org/api_docs/python/tf/raw_ops/Conv3DBackpropInputV2
class TestConv3DBackprop(CommonTFLayerTest):
# input_shape - should be an array, shape of input tensor in format [batch, depth, height, width, channels]
# input_filter - should be an array, defines a filter
# out_backprop - should be an array, shape of backprop
# input_strides - should be an array, defines strides of a sliding window to use
# input_padding - should be a string, defines padding algorithm
# ir_version - common parameter
# use_legacy_frontend - common parameter
def create_conv3dbackprop_placeholder_const_net(self, input_shape, input_filter, out_backprop, input_strides,
input_padding, dilations, ir_version, use_legacy_frontend):
"""
TensorFlow net IR net
Placeholder->Conv3DBackpropInputV2 => Placeholder->Transpose->ConvolutionBackpropData->Transpose
/ /
Placeholder-/ Placeholder->Transpose-/
"""
import tensorflow as tf
if dilations is None:
dilations = [1, 1, 1, 1, 1] # default value regarding Documentation
else:
pytest.skip('Dilations != 1 isn\' supported on CPU by TensorFlow')
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
tf_input = tf.constant(input_shape)
tf_filter = tf.compat.v1.placeholder(tf.float32, input_filter, "InputFilter")
tf_backprop = tf.compat.v1.placeholder(tf.float32, out_backprop, "InputBackprop")
tf.raw_ops.Conv3DBackpropInputV2(input_sizes=tf_input, filter=tf_filter, out_backprop=tf_backprop,
strides=input_strides, padding=input_padding)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
ref_net = None
return tf_net, ref_net
test_data = [
dict(input_shape=[1, 15, 15, 15, 1], input_filter=[1, 1, 1, 1, 1], out_backprop=[1, 15, 15, 15, 1],
input_strides=[1, 1, 1, 1, 1], input_padding='SAME', dilations=None),
dict(input_shape=[1, 15, 15, 15, 2], input_filter=[1, 1, 1, 2, 2], out_backprop=[1, 15, 15, 15, 2],
input_strides=[1, 1, 1, 1, 1], input_padding='SAME', dilations=None),
dict(input_shape=[1, 16, 16, 16, 3], input_filter=[2, 2, 2, 3, 3], out_backprop=[1, 8, 8, 8, 3],
input_strides=[1, 2, 2, 2, 1], input_padding='SAME', dilations=None),
dict(input_shape=[1, 10, 10, 20, 3], input_filter=[2, 2, 2, 3, 3], out_backprop=[1, 5, 5, 10, 3],
input_strides=[1, 2, 2, 2, 1], input_padding='SAME', dilations=None),
dict(input_shape=[1, 15, 15, 15, 1], input_filter=[1, 1, 1, 1, 1], out_backprop=[1, 15, 15, 15, 1],
input_strides=[1, 1, 1, 1, 1], input_padding='VALID', dilations=None),
dict(input_shape=[1, 15, 15, 15, 2], input_filter=[1, 1, 1, 2, 2], out_backprop=[1, 15, 15, 15, 2],
input_strides=[1, 1, 1, 1, 1], input_padding='VALID', dilations=None),
dict(input_shape=[1, 16, 16, 16, 3], input_filter=[2, 2, 2, 3, 3], out_backprop=[1, 8, 8, 8, 3],
input_strides=[1, 2, 2, 2, 1], input_padding='VALID', dilations=None),
dict(input_shape=[1, 10, 10, 20, 3], input_filter=[2, 2, 2, 3, 3], out_backprop=[1, 5, 5, 10, 3],
input_strides=[1, 2, 2, 2, 1], input_padding='VALID', dilations=None),
pytest.param(
dict(input_shape=[1, 16, 20, 10, 3], input_filter=[3, 2, 4, 3, 3], out_backprop=[1, 8, 10, 5, 3],
input_strides=[1, 2, 2, 2, 1], input_padding='SAME', dilations=None),
marks=pytest.mark.precommit),
pytest.param(
dict(input_shape=[1, 16, 16, 16, 3], input_filter=[4, 2, 3, 3, 3], out_backprop=[1, 7, 8, 7, 3],
input_strides=[1, 2, 2, 2, 1], input_padding='VALID', dilations=None),
marks=pytest.mark.precommit),
]
@pytest.mark.parametrize("params", test_data)
@pytest.mark.nightly
def test_conv3dbackprop_placeholder_const(self, params, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
if ie_device == 'GPU':
pytest.skip("Unable to convert data format b_fs_zyx_fsv16 to weights format issue on GPU")
self._test(*self.create_conv3dbackprop_placeholder_const_net(**params, ir_version=ir_version,
use_legacy_frontend=use_legacy_frontend),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)