forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_Bincount.py
65 lines (51 loc) · 2.41 KB
/
test_tf_Bincount.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import platform
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
rng = np.random.default_rng()
class TestBincount(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'x:0' in inputs_info, "Test error: inputs_info must contain `x`"
x_shape = inputs_info['x:0']
inputs_data = {}
inputs_data['x:0'] = rng.integers(0, 8, x_shape).astype(np.int32)
if 'w:0' in inputs_info:
w_shape = inputs_info['w:0']
inputs_data['w:0'] = rng.uniform(-2.0, 2.0, w_shape).astype(self.weights_type)
return inputs_data
def create_bincount_net(self, input_shape, size, weights, weights_type):
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
x = tf.compat.v1.placeholder(np.int32, input_shape, 'x')
s = tf.constant(size)
self.weights_type = weights_type
if weights is not None:
w = tf.compat.v1.placeholder(weights_type, input_shape, 'w')
else:
w = tf.constant([], dtype=weights_type)
tf.raw_ops.Bincount(arr=x, size=s, weights=w)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data = [
# with no weights
dict(input_shape=[], size=1, weights=None, weights_type=np.float32),
dict(input_shape=[2], size=2, weights=None, weights_type=np.float64),
dict(input_shape=[1,3], size=3, weights=None, weights_type=np.int32),
dict(input_shape=[3,1,4], size=4, weights=None, weights_type=np.int64),
# with weights
dict(input_shape=[], size=1, weights=True, weights_type=np.float32),
dict(input_shape=[2], size=2, weights=True, weights_type=np.float64),
dict(input_shape=[1,3], size=3, weights=True, weights_type=np.int32),
dict(input_shape=[3,1,4], size=4, weights=True, weights_type=np.int64),
]
@pytest.mark.parametrize("params", test_data)
@pytest.mark.precommit
@pytest.mark.nightly
def test_bincount(self, params, ie_device, precision, ir_version, temp_dir):
self._test(*self.create_bincount_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir)