forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_ApproximateEqual.py
47 lines (42 loc) · 2.05 KB
/
test_tf_ApproximateEqual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import tensorflow as tf
import pytest
from common.tf_layer_test_class import CommonTFLayerTest
class TestApproximateEqual(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
rng = np.random.default_rng()
assert 'tensor1:0' in inputs_info
assert 'tensor2:0' in inputs_info
tensor1_shape = inputs_info['tensor1:0']
tensor2_shape = inputs_info['tensor2:0']
inputs_data = {}
inputs_data['tensor1:0'] = 4 * rng.random(tensor1_shape).astype(np.float32) - 2
inputs_data['tensor2:0'] = 4 * rng.random(tensor2_shape).astype(np.float32) - 2
return inputs_data
def create_approximate_equal_net(self, input1_shape, input2_shape):
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
tensor1 = tf.compat.v1.placeholder(tf.float32, input1_shape, 'tensor1')
tensor2 = tf.compat.v1.placeholder(tf.float32, input2_shape, 'tensor2')
approx_equal_op = tf.raw_ops.ApproximateEqual(x=tensor1, y=tensor2, tolerance=0.01)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data_basic = [
dict(input1_shape=[2, 3], input2_shape=[2, 3]),
dict(input1_shape=[3, 4, 5], input2_shape=[3, 4, 5]),
dict(input1_shape=[1, 2, 3, 4], input2_shape=[1, 2, 3, 4]),
]
@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit
@pytest.mark.nightly
def test_approximate_equal_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
if ie_device == 'GPU' and precision == 'FP16':
pytest.skip("Accuracy mismatch on GPU")
self._test(*self.create_approximate_equal_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)