forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_AdjustContrastv2.py
43 lines (36 loc) · 1.84 KB
/
test_tf_AdjustContrastv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
rng = np.random.default_rng(2323534)
class TestAdjustContrastv2(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'images:0' in inputs_info
assert 'contrast_factor:0' in inputs_info
inputs_data = {}
images_shape = inputs_info['images:0']
inputs_data['images:0'] = rng.uniform(0, 1.0, images_shape).astype(self.input_type)
inputs_data['contrast_factor:0'] = rng.uniform(0, 1.0, []).astype(np.float32)
return inputs_data
def create_adjust_contrast_net(self, input_shape, input_type):
self.input_type = input_type
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
images = tf.compat.v1.placeholder(input_type, input_shape, 'images')
contrast_factor = tf.compat.v1.placeholder(tf.float32, [], 'contrast_factor')
tf.raw_ops.AdjustContrastv2(images=images, contrast_factor=contrast_factor)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
@pytest.mark.parametrize('input_shape', [[10, 20, 3], [5, 25, 15, 2], [3, 4, 8, 10, 4]])
@pytest.mark.parametrize('input_type', [np.float32])
@pytest.mark.precommit
@pytest.mark.nightly
def test_adjust_contrast_basic(self, input_shape, input_type, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
self._test(*self.create_adjust_contrast_net(input_shape, input_type),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)