-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrajectory.py
561 lines (426 loc) · 28.2 KB
/
trajectory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import math
import numpy as np
from numpy.polynomial import polynomial
from trajectory_functions import traj_functions
PI = math.pi
class circular_trajectory:
def user_defined_trajectory(t, radius_trajectory, angular_velocity_trajectory, altitude_trajectory):
"Circular trajectory at a constant altitude"
translational_position_in_I_user = np.zeros((3,1))
translational_velocity_in_I_user = np.zeros((3,1))
translational_acceleration_in_I_user = np.zeros((3,1))
# translational_position_in_I_user[0] = radius_trajectory*math.cos(-angular_velocity_trajectory * t) - radius_trajectory/2
translational_position_in_I_user[0] = radius_trajectory*math.cos(-angular_velocity_trajectory * t) - radius_trajectory
translational_position_in_I_user[1] = radius_trajectory*math.sin(-angular_velocity_trajectory * t)
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = -angular_velocity_trajectory * radius_trajectory * math.sin(angular_velocity_trajectory * t)
translational_velocity_in_I_user[1] = -angular_velocity_trajectory * radius_trajectory * math.cos(angular_velocity_trajectory * t)
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = -angular_velocity_trajectory**2 * radius_trajectory * math.cos(angular_velocity_trajectory * t)
translational_acceleration_in_I_user[1] = angular_velocity_trajectory**2 * radius_trajectory * math.sin(angular_velocity_trajectory * t)
translational_acceleration_in_I_user[2] = 0
return [translational_position_in_I_user, translational_velocity_in_I_user, translational_acceleration_in_I_user]
# def user_defined_yaw(t, angular_velocity_trajectory):
# "User-defined reference yaw angle"
# psi_ref = -angular_velocity_trajectory * t
# psi_ref_dot = -angular_velocity_trajectory
# psi_ref_ddot = 0
# return [psi_ref, psi_ref_dot, psi_ref_ddot]
def user_defined_yaw(t, angular_velocity_trajectory):
"User-defined reference yaw angle"
if (t < 0.5):
psi_ref = -angular_velocity_trajectory * t - math.pi/8
elif (t >= 0.5 and t < 1):
psi_ref = -angular_velocity_trajectory * t - math.pi/4
elif (t >= 1 and t < 1.5):
psi_ref = -angular_velocity_trajectory * t - 3*math.pi/8
else:
psi_ref = -angular_velocity_trajectory * t - math.pi/2
psi_ref_dot = -angular_velocity_trajectory
psi_ref_ddot = 0
return [psi_ref, psi_ref_dot, psi_ref_ddot]
# ==============================================================================================================================
#
# ==============================================================================================================================
class hover_trajectory:
def user_defined_trajectory(t, altitude_trajectory):
"Circular trajectory at a constant altitude"
translational_position_in_I_user = np.zeros((3,1))
translational_velocity_in_I_user = np.zeros((3,1))
translational_acceleration_in_I_user = np.zeros((3,1))
translational_position_in_I_user[0] = 0
translational_position_in_I_user[1] = 0
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = 0
translational_velocity_in_I_user[1] = 0
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = 0
translational_acceleration_in_I_user[1] = 0
translational_acceleration_in_I_user[2] = 0
return [translational_position_in_I_user, translational_velocity_in_I_user, translational_acceleration_in_I_user]
def user_defined_yaw(t):
"User-defined reference yaw angle"
psi_ref = 0
psi_ref_dot = 0
psi_ref_ddot = 0
return [psi_ref, psi_ref_dot, psi_ref_ddot]
# ==============================================================================================================================
#
# ==============================================================================================================================
class square_trajectory:
def user_defined_trajectory(t, square_side_size, linear_velocity_trajectory, altitude_trajectory):
"Square trajectory at a constant altitude"
translational_position_in_I_user = np.zeros((3,1))
translational_velocity_in_I_user = np.zeros((3,1))
translational_acceleration_in_I_user = np.zeros((3,1))
time_side = square_side_size/linear_velocity_trajectory # time required to complete one side of the square
if t < time_side:
# First segment of the square
translational_position_in_I_user[0] = linear_velocity_trajectory * t
translational_position_in_I_user[1] = 0
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = linear_velocity_trajectory
translational_velocity_in_I_user[1] = 0
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = 0
translational_acceleration_in_I_user[1] = 0
translational_acceleration_in_I_user[2] = 0
elif (t >= time_side and t < 2*time_side):
# Second segment of the square
translational_position_in_I_user[0] = square_side_size
translational_position_in_I_user[1] = -square_side_size + linear_velocity_trajectory * t
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = 0
translational_velocity_in_I_user[1] = linear_velocity_trajectory
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = 0
translational_acceleration_in_I_user[1] = 0
translational_acceleration_in_I_user[2] = 0
return [translational_position_in_I_user, translational_velocity_in_I_user, translational_acceleration_in_I_user]
def user_defined_yaw(t, square_side_size, linear_velocity_trajectory):
"User-defined reference yaw angle"
time_side = square_side_size/linear_velocity_trajectory # time required to complete one side of the square
if t < time_side:
# First segment of the square
psi_ref = 0
psi_ref_dot = 0
psi_ref_ddot = 0
elif (t >= time_side and t < 2*time_side):
# Second segment of the square
psi_ref = math.pi/2
# psi_ref = min(math.pi/2, (t-time_side) * 0.1)
# psi_ref = 0
psi_ref_dot = 0
psi_ref_ddot = 0
return [psi_ref, psi_ref_dot, psi_ref_ddot]
# ==============================================================================================================================
#
# ==============================================================================================================================
class roundedRectangle_trajectory:
def user_defined_trajectory(t, length_horizontal, length_vertical, rounding_radius, linear_velocity_trajectory, altitude_trajectory):
"Rounded rectangle trajectory at a constant altitude"
translational_position_in_I_user = np.zeros((3,1))
translational_velocity_in_I_user = np.zeros((3,1))
translational_acceleration_in_I_user = np.zeros((3,1))
# Compute the time needed to span each segment
# Segment 1: From (0, 0) to (length_horizontal, 0)
# Segment 2: From (length_horizontal, 0) to (length_horizontal + rounding_radius, rounding_radius)
# Segment 3: From (length_horizontal + rounding_radius, rounding_radius) to (length_horizontal + rounding_radius, length_vertical + rounding_radius)
# Segment 4: From (length_horizontal + rounding_radius, length_vertical + rounding_radius) to (length_horizontal , length_vertical + 2*rounding_radius)
# Segment 5: From (length_horizontal , length_vertical + 2*rounding_radius) to (0, length_vertical + 2*rounding_radius)
# Segment 6: From (0, length_vertical + 2*rounding_radius) to (-rounding_radius, length_vertical + rounding_radius)
# Segment 7: From (-rounding_radius, length_vertical + rounding_radius) to (-rounding_radius, rounding_radius)
# Segment 8: From (-rounding_radius, rounding_radius) to (0, 0)
# Segment 1: From t_0 = 0 to t_1 = length_horizontal/linear_velocity_trajectory
# Segment 2: From t_1 = length_horizontal/linear_velocity_trajectory to t_2 = t_1 + (pi/4*rounding_radius)/linear_velocity_trajectory
# Segment 3: From t_2 = t_1 + (pi/4*rounding_radius)/linear_velocity_trajectory to t_3 = t_2 + length_vertical/linear_velocity_trajectory
# Segment 4: From t_3 = t_2 + length_vertical/linear_velocity_trajectory to t_4 = t_3 + (pi/4*rounding_radius)/linear_velocity_trajectory
# Segment 5: From t_4 = t_3 + (pi/4*rounding_radius)/linear_velocity_trajectory to t_5 = t_4 + length_horizontal/linear_velocity_trajectory
# Segment 6: From t_5 = t_4 + length_horizontal/linear_velocity_trajectory to t_6 = t_5 + (pi/4*rounding_radius)/linear_velocity_trajectory
# Segment 7: From t_6 = t_5 + (pi/4*rounding_radius)/linear_velocity_trajectory to t_7 = t_6 + length_vertical/linear_velocity_trajectory
# Segment 8: From t_7 = t_6 + length_vertical/linear_velocity_trajectory to T_max
# Compute the constant angular velocity on smoothed corners
omega_corner = linear_velocity_trajectory/rounding_radius
t_1 = length_horizontal/linear_velocity_trajectory;
t_2 = t_1 + (rounding_radius*PI/2)/linear_velocity_trajectory;
t_3 = t_2 + length_vertical/linear_velocity_trajectory;
t_4 = t_3 + (rounding_radius*PI/2)/linear_velocity_trajectory;
t_5 = t_4 + length_horizontal/linear_velocity_trajectory;
t_6 = t_5 + (rounding_radius*PI/2)/linear_velocity_trajectory;
t_7 = t_6 + length_vertical/linear_velocity_trajectory;
t_8 = t_7 + (rounding_radius*PI/2)/linear_velocity_trajectory;
if (t >= 0 and t < t_1):
# 1 Top horizontal segment
translational_position_in_I_user[0] = linear_velocity_trajectory * t
translational_position_in_I_user[1] = 0
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = linear_velocity_trajectory
translational_velocity_in_I_user[1] = 0
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = 0
translational_acceleration_in_I_user[1] = 0
translational_acceleration_in_I_user[2] = 0
elif (t >= t_1 and t < t_2):
# 2 Top-right rounding radius
translational_position_in_I_user[0] = length_horizontal + rounding_radius * math.cos(-PI/2 + omega_corner * (t - t_1))
translational_position_in_I_user[1] = rounding_radius + rounding_radius * math.sin(-PI/2 + omega_corner * (t - t_1))
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = rounding_radius * omega_corner * math.cos(omega_corner * (t - t_1))
translational_velocity_in_I_user[1] = rounding_radius * omega_corner * math.sin(omega_corner * (t - t_1))
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = -rounding_radius * omega_corner**2 * math.sin(omega_corner * (t - t_1))
translational_acceleration_in_I_user[1] = rounding_radius * omega_corner**2 * math.cos(omega_corner * (t - t_1))
translational_acceleration_in_I_user[2] = 0
elif (t >= t_2 and t < t_3):
# 3 Right vertical segment
translational_position_in_I_user[0] = length_horizontal + rounding_radius
translational_position_in_I_user[1] = rounding_radius + linear_velocity_trajectory*(t - t_2)
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = 0
translational_velocity_in_I_user[1] = linear_velocity_trajectory
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = 0
translational_acceleration_in_I_user[1] = 0
translational_acceleration_in_I_user[2] = 0
elif (t >= t_3 and t < t_4):
# 4 Bottom-right rounding radius
translational_position_in_I_user[0] = length_horizontal - rounding_radius * math.sin(-PI/2 + omega_corner * (t - t_3))
translational_position_in_I_user[1] = rounding_radius + length_vertical + rounding_radius * math.cos(-PI/2 + omega_corner * (t - t_3))
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = -rounding_radius * omega_corner * math.sin(omega_corner * (t - t_3))
translational_velocity_in_I_user[1] = rounding_radius * omega_corner * math.cos(omega_corner * (t - t_3))
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = -rounding_radius * omega_corner**2 * math.cos(omega_corner * (t - t_3))
translational_acceleration_in_I_user[1] = -rounding_radius * omega_corner**2 * math.sin(omega_corner * (t - t_3))
translational_acceleration_in_I_user[2] = 0
elif (t >= t_4 and t < t_5):
# 5 Bottom horizontal segment
translational_position_in_I_user[0] = length_horizontal - linear_velocity_trajectory * (t - t_4)
translational_position_in_I_user[1] = length_vertical + 2*rounding_radius
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = -linear_velocity_trajectory
translational_velocity_in_I_user[1] = 0
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = 0
translational_acceleration_in_I_user[1] = 0
translational_acceleration_in_I_user[2] = 0
elif (t >= t_5 and t < t_6):
# 6 Bottom-left rounding radius
translational_position_in_I_user[0] = 0 - rounding_radius * math.cos(-PI/2 + omega_corner * (t - t_5))
translational_position_in_I_user[1] = length_vertical + rounding_radius - rounding_radius * math.sin(-PI/2 + omega_corner * (t - t_5))
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = -rounding_radius * omega_corner * math.cos(omega_corner * (t - t_5))
translational_velocity_in_I_user[1] = -rounding_radius * omega_corner * math.sin(omega_corner * (t - t_5))
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = rounding_radius * omega_corner**2 * math.sin(omega_corner * (t - t_5))
translational_acceleration_in_I_user[1] = -rounding_radius * omega_corner**2 * math.cos(omega_corner * (t - t_5))
translational_acceleration_in_I_user[2] = 0
elif (t >= t_6 and t < t_7):
# 7 Left vertical segment
translational_position_in_I_user[0] = -rounding_radius
translational_position_in_I_user[1] = rounding_radius + length_vertical - linear_velocity_trajectory * (t - t_6)
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = 0
translational_velocity_in_I_user[1] = -linear_velocity_trajectory
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = 0
translational_acceleration_in_I_user[1] = 0
translational_acceleration_in_I_user[2] = 0
elif (t >= t_7 and t < t_8):
# 8 Bottom-left rounding radius
translational_position_in_I_user[0] = 0 + rounding_radius * math.sin(-PI/2 + omega_corner * (t - t_7))
translational_position_in_I_user[1] = rounding_radius - rounding_radius * math.cos(-PI/2 + omega_corner * (t - t_7))
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = rounding_radius * omega_corner * math.sin(omega_corner * (t - t_7))
translational_velocity_in_I_user[1] = -rounding_radius * omega_corner * math.cos(omega_corner * (t - t_7))
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = rounding_radius * omega_corner**2 * math.cos(omega_corner * (t - t_7))
translational_acceleration_in_I_user[1] = rounding_radius * omega_corner**2 * math.sin(omega_corner * (t - t_7))
translational_acceleration_in_I_user[2] = 0
else:
translational_position_in_I_user[0] = 0
translational_position_in_I_user[1] = 0
translational_position_in_I_user[2] = altitude_trajectory
translational_velocity_in_I_user[0] = 0
translational_velocity_in_I_user[1] = 0
translational_velocity_in_I_user[2] = 0
translational_acceleration_in_I_user[0] = 0
translational_acceleration_in_I_user[1] = 0
translational_acceleration_in_I_user[2] = 0
return [translational_position_in_I_user, translational_velocity_in_I_user, translational_acceleration_in_I_user]
def user_defined_yaw(t, length_horizontal, length_vertical, rounding_radius, linear_velocity_trajectory, altitude_trajectory):
"User-defined reference yaw angle" # TO BE MODIFIEEEEEEEDDDDDD!
# Compute the constant angular velocity on smoothed corners
omega_corner = linear_velocity_trajectory/rounding_radius
t_1 = length_horizontal/linear_velocity_trajectory;
t_2 = t_1 + (rounding_radius*PI/2)/linear_velocity_trajectory;
t_3 = t_2 + length_vertical/linear_velocity_trajectory;
t_4 = t_3 + (rounding_radius*PI/2)/linear_velocity_trajectory;
t_5 = t_4 + length_horizontal/linear_velocity_trajectory;
t_6 = t_5 + (rounding_radius*PI/2)/linear_velocity_trajectory;
t_7 = t_6 + length_vertical/linear_velocity_trajectory;
t_8 = t_7 + (rounding_radius*PI/2)/linear_velocity_trajectory;
if (t >= 0 and t < t_1):
# 1 Top horizontal segment
psi_ref = 0
psi_ref_dot = 0
psi_ref_ddot = 0
elif (t >= t_1 and t < t_2):
# 2 Top-right rounding radius
psi_ref = omega_corner * (t - t_1)
psi_ref_dot = omega_corner
psi_ref_ddot = 0
elif (t >= t_2 and t < t_3):
# 3 Right vertical segment
psi_ref = PI/2
psi_ref_dot = 0
psi_ref_ddot = 0
elif (t >= t_3 and t < t_4):
# 4 Bottom-right rounding radius
psi_ref = PI/2 + omega_corner * (t - t_3)
psi_ref_dot = omega_corner
psi_ref_ddot = 0
elif (t >= t_4 and t < t_5):
# 5 Bottom horizontal segment
psi_ref = PI
psi_ref_dot = 0
psi_ref_ddot = 0
elif (t >= t_5 and t < t_6):
# 6 Bottom-left rounding radius
psi_ref = PI + omega_corner * (t - t_5)
psi_ref_dot = omega_corner
psi_ref_ddot = 0
elif (t >= t_6 and t < t_7):
# 7 Left vertical segment
psi_ref = 3*PI/2
psi_ref_dot = 0
psi_ref_ddot = 0
elif (t >= t_7 and t < t_8):
# 8 Bottom-left rounding radius
psi_ref = 3*PI/2 + omega_corner * (t - t_7)
psi_ref_dot = omega_corner
psi_ref_ddot = 0
else:
psi_ref = 0
psi_ref_dot = 0
psi_ref_ddot = 0
return [psi_ref, psi_ref_dot, psi_ref_ddot]
# ==============================================================================================================================
#
# ==============================================================================================================================
class piecewisePolynomial_trajectory:
def __init__(self):
self.translational_position_in_I_user = np.zeros((3,1))
self.translational_velocity_in_I_user = np.zeros((3,1))
self.translational_acceleration_in_I_user = np.zeros((3,1))
self.t_adjusted = 0
self.segment = 0
self.velocity_norm2D = 0
self.psi_ref = 0
self.psi_ref_dot = 0
self.psi_ref_ddot = 0
self.psi_ref_previous = 0
def set_parameters(self, pp_coefficients, waypointTimes):
self.waypointTimes = waypointTimes
[self.position_coef_x,
self.position_coef_y,
self.position_coef_z] = traj_functions.PolyCoefAssigning(pp_coefficients)
self.velocity_coef_x = traj_functions.PolyderMatrix(self.position_coef_x)
self.velocity_coef_y = traj_functions.PolyderMatrix(self.position_coef_y)
self.velocity_coef_z = traj_functions.PolyderMatrix(self.position_coef_z)
self.acceleration_coef_x = traj_functions.PolyderMatrix(self.velocity_coef_x)
self.acceleration_coef_y = traj_functions.PolyderMatrix(self.velocity_coef_y)
self.acceleration_coef_z = traj_functions.PolyderMatrix(self.velocity_coef_z)
self.jerk_coef_x = traj_functions.PolyderMatrix(self.acceleration_coef_x)
self.jerk_coef_y = traj_functions.PolyderMatrix(self.acceleration_coef_y)
self.jerk_coef_z = traj_functions.PolyderMatrix(self.acceleration_coef_z)
def user_defined_trajectory(self, t):
"""Piecewise polynomial trajectory.
t: current simulation time
pp_coefficients: matrix of the coefficients of the piecewise polynomial
trajectory
waypointTimes: times of the waypoints
"""
[self.t_adjusted,
self.segment] = traj_functions.PolyTimeAdjusted(self.waypointTimes, t)
self.translational_position_in_I_user[0] = polynomial.polyval(
self.t_adjusted,
self.position_coef_x[self.segment,:])
self.translational_position_in_I_user[1] = polynomial.polyval(
self.t_adjusted,
self.position_coef_y[self.segment,:])
self.translational_position_in_I_user[2] = polynomial.polyval(
self.t_adjusted,
self.position_coef_z[self.segment,:])
self.translational_velocity_in_I_user[0] = polynomial.polyval(
self.t_adjusted,
self.velocity_coef_x[self.segment,:])
self.translational_velocity_in_I_user[1] = polynomial.polyval(
self.t_adjusted,
self.velocity_coef_y[self.segment,:])
self.translational_velocity_in_I_user[2] = polynomial.polyval(
self.t_adjusted,
self.velocity_coef_z[self.segment,:])
self.translational_acceleration_in_I_user[0] = polynomial.polyval(
self.t_adjusted,
self.acceleration_coef_x[self.segment,:])
self.translational_acceleration_in_I_user[1] = polynomial.polyval(
self.t_adjusted,
self.acceleration_coef_y[self.segment,:])
self.translational_acceleration_in_I_user[2] = polynomial.polyval(
self.t_adjusted,
self.acceleration_coef_z[self.segment,:])
return [self.translational_position_in_I_user,
self.translational_velocity_in_I_user,
self.translational_acceleration_in_I_user]
def user_defined_yaw(self):
"User-defined reference yaw angle"
self.velocity_norm2D = traj_functions.Norm2D(
self.velocity_coef_x[self.segment,:],
self.velocity_coef_y[self.segment,:],
self.t_adjusted)
if self.t_adjusted == 0:
self.psi_ref = 0
self.psi_ref_dot = 0
self.psi_ref_ddot = 0
elif (self.t_adjusted > 0 and self.velocity_norm2D < 1e-5):
self.psi_ref = self.psi_ref_previous
self.psi_ref_dot = 0
self.psi_ref_ddot = 0
else:
self.psi_ref = traj_functions.YawComputation(
self.velocity_coef_x[self.segment,:],
self.velocity_coef_y[self.segment,:],
self.t_adjusted)
self.psi_ref_dot = traj_functions.YawDotComputation(
self.velocity_coef_x[self.segment,:],
self.velocity_coef_y[self.segment,:],
self.acceleration_coef_x[self.segment,:],
self.acceleration_coef_y[self.segment,:],
self.t_adjusted)
self.psi_ref_ddot = traj_functions.YawDotDotComputation(
self.velocity_coef_x[self.segment,:],
self.velocity_coef_y[self.segment,:],
self.acceleration_coef_x[self.segment,:],
self.acceleration_coef_y[self.segment,:],
self.jerk_coef_x[self.segment,:],
self.jerk_coef_y[self.segment,:],
self.t_adjusted)
self.psi_ref_previous = self.psi_ref
return [self.psi_ref,
self.psi_ref_dot,
self.psi_ref_ddot]
def ComputePositionVector(self, samplingTime = 0.01):
"Drawing ChLineSegement for visualization of the trajectory in simulation"
self.samplingTime = samplingTime
sampling_time_vector = traj_functions.SamplingTimeVector(self.waypointTimes,
self.samplingTime)
pos_x = np.zeros(sampling_time_vector.size)
pos_y = np.zeros(sampling_time_vector.size)
pos_z = np.zeros(sampling_time_vector.size)
for i in range(sampling_time_vector.size):
[position, _ , _]= self.user_defined_trajectory(sampling_time_vector[i])
pos_x[i] = position[0]
pos_y[i] = position[1]
pos_z[i] = position[2]
return [pos_x, pos_y, pos_z]