-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathdemo.py
60 lines (47 loc) · 1.56 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright (c) Alibaba, Inc. and its affiliates.
import ast
import os
import argparse
import torch
from cnnnet import CnnNet
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--structure_txt', type=str)
parser.add_argument('--pretrained', type=str, default=None)
args = parser.parse_args()
return args
def get_backbone(filename,
pretrained=True,
network_id=0,
classification=True #False for detetion
):
# load best structures
with open(filename, 'r') as fin:
content = fin.read()
output_structures = ast.literal_eval(content)
network_arch = output_structures['space_arch']
best_structures = output_structures['best_structures']
# If task type is classification, param num_classes is required
out_indices = (1, 2, 3, 4) if not classification else (4, )
backbone = CnnNet(
structure_info=best_structures[network_id],
out_indices=out_indices,
num_classes=1000,
classification=classification)
backbone.init_weights(pretrained)
return backbone, network_arch
if __name__ == '__main__':
# make input
args = parse_args()
x = torch.randn(1, 3, 224, 224)
# instantiation
backbone, network_arch = get_backbone(args.structure_txt,
args.pretrained)
print(backbone)
# forward
input_data = [x]
backbone.eval()
pred = backbone(*input_data)
#print output
for o in pred:
print(o.size())