|
| 1 | +import os |
| 2 | +import numpy as np |
| 3 | +import xml.etree.ElementTree as ET |
| 4 | +import argparse |
| 5 | + |
| 6 | + |
| 7 | +parser = argparse.ArgumentParser() |
| 8 | +parser.add_argument('--data-dir', default='../dataset') |
| 9 | +parser.add_argument('--data-year', default='2007') |
| 10 | +parser.add_argument('--detect-dir', default='./outputs/detects') |
| 11 | +parser.add_argument('--use-07-metric', type=bool, default=False) |
| 12 | +args = parser.parse_args() |
| 13 | + |
| 14 | + |
| 15 | +def get_annotation(anno_file): |
| 16 | + tree = ET.parse(anno_file) |
| 17 | + objects = [] |
| 18 | + for obj in tree.findall('object'): |
| 19 | + obj_struct = {} |
| 20 | + obj_struct['name'] = obj.find('name').text |
| 21 | + obj_struct['pose'] = obj.find('pose').text |
| 22 | + obj_struct['truncated'] = int(obj.find('truncated').text) |
| 23 | + obj_struct['difficult'] = int(obj.find('difficult').text) |
| 24 | + bbox = obj.find('bndbox') |
| 25 | + obj_struct['bbox'] = [int(bbox.find('xmin').text), |
| 26 | + int(bbox.find('ymin').text), |
| 27 | + int(bbox.find('xmax').text), |
| 28 | + int(bbox.find('ymax').text)] |
| 29 | + objects.append(obj_struct) |
| 30 | + |
| 31 | + return objects |
| 32 | + |
| 33 | + |
| 34 | +def compute_ap(rec, prec, ap, use_07_metric=False): |
| 35 | + if use_07_metric: |
| 36 | + ap = 0.0 |
| 37 | + for t in np.arange(0.0, 1.1, 0.1): |
| 38 | + if np.sum(rec >= t) == 0: |
| 39 | + p = 0 |
| 40 | + else: |
| 41 | + p = np.max(prec[rec >= t]) |
| 42 | + ap = ap + p / 11.0 |
| 43 | + else: |
| 44 | + mrec = np.concatenate(([0.0], rec, [1.0])) |
| 45 | + mprec = np.concatenate(([0.0], prec, [0.0])) |
| 46 | + |
| 47 | + for i in range(mprec.size - 1, 0, -1): |
| 48 | + mprec[i - 1] = np.maximum(mprec[i - 1], mprec[i]) |
| 49 | + |
| 50 | + i = np.where(mrec[1:] != mrec[:-1])[0] |
| 51 | + |
| 52 | + ap = np.sum((mrec[i + 1] - mrec[i]) * mprec[i + 1]) |
| 53 | + |
| 54 | + return ap |
| 55 | + |
| 56 | + |
| 57 | +def voc_eval(det_path, anno_path, cls_name, iou_thresh=0.5, use_07_metric=False): |
| 58 | + det_file = det_path.format(cls_name) |
| 59 | + with open(det_file, 'r') as f: |
| 60 | + lines = f.readlines() |
| 61 | + |
| 62 | + lines = [x.strip().split(' ') for x in lines] |
| 63 | + image_ids = [x[0] for x in lines] |
| 64 | + confs = np.array([float(x[1]) for x in lines]) |
| 65 | + boxes = np.array([[float(z) for z in x[2:]] for x in lines]) |
| 66 | + |
| 67 | + gts = {} |
| 68 | + cls_gts = {} |
| 69 | + npos = 0 |
| 70 | + for image_id in image_ids: |
| 71 | + gts[image_id] = get_annotation(anno_path.format(image_id)) |
| 72 | + R = [obj for obj in gts[image_id] if obj['name'] == cls_name] |
| 73 | + gt_boxes = np.array([x['bbox'] for x in R]) |
| 74 | + difficult = np.array([x['difficult'] for x in R]).astype(np.bool) |
| 75 | + det = [False] * len(R) |
| 76 | + npos = npos + sum(~difficult) |
| 77 | + cls_gts[image_id] = { |
| 78 | + 'gt_boxes': gt_boxes, |
| 79 | + 'difficult': difficult, |
| 80 | + 'det': det |
| 81 | + } |
| 82 | + |
| 83 | + sorted_ids = np.argsort(-confs) |
| 84 | + sorted_scores = np.sort(-confs) |
| 85 | + boxes = boxes[sorted_ids, :] |
| 86 | + image_ids = [image_ids[x] for x in sorted_ids] |
| 87 | + |
| 88 | + nd = len(image_ids) |
| 89 | + tp = np.zeros(nd) |
| 90 | + fp = np.zeros(nd) |
| 91 | + for d in range(nd): |
| 92 | + R = cls_gts[image_ids[d]] |
| 93 | + box = boxes[d, :].astype(float) |
| 94 | + iou_max = -np.inf |
| 95 | + gt_box = R['gt_boxes'].astype(float) |
| 96 | + |
| 97 | + if gt_box.size > 0: |
| 98 | + ixmin = np.maximum(gt_box[:, 0], box[0]) |
| 99 | + ixmax = np.maximum(gt_box[:, 2], box[2]) |
| 100 | + iymin = np.maximum(gt_box[:, 1], box[1]) |
| 101 | + iymax = np.maximum(gt_box[:, 3], box[3]) |
| 102 | + iw = np.maximum(ixmax - ixmin + 1.0, 0.0) |
| 103 | + ih = np.maximum(iymax - iymin + 1.0, 0.0) |
| 104 | + inters = iw * ih |
| 105 | + |
| 106 | + uni = ((box[2] - box[0] + 1.0) * (box[3] - box[1] + 1.0) + |
| 107 | + (gt_box[:, 2] - gt_box[:, 0] + 1.0) * |
| 108 | + (gt_box[:, 3] - gt_box[:, 1] + 1.0) - inters) |
| 109 | + |
| 110 | + ious = inters / uni |
| 111 | + iou_max = np.max(ious) |
| 112 | + jmax = np.argmax(ious) |
| 113 | + |
| 114 | + if iou_max > iou_thresh: |
| 115 | + if not R['difficult'][jmax]: |
| 116 | + if not R['det'][jmax]: |
| 117 | + tp[d] = 1.0 |
| 118 | + R['det'][jmax] = 1 |
| 119 | + else: |
| 120 | + fp[d] = 1.0 |
| 121 | + else: |
| 122 | + fp[d] = 1.0 |
| 123 | + |
| 124 | + fp = np.cumsum(fp) |
| 125 | + tp = np.cumsum(tp) |
| 126 | + recall = tp / float(npos) |
| 127 | + precision = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) |
| 128 | + |
| 129 | + ap = compute_ap(recall, precision, use_07_metric) |
| 130 | + |
| 131 | + return recall, precision, ap |
| 132 | + |
| 133 | + |
| 134 | +if __name__ == '__main__': |
| 135 | + aps = { |
| 136 | + 'aeroplane': 0.0, |
| 137 | + 'bicycle': 0.0, |
| 138 | + 'bird': 0.0, |
| 139 | + 'boat': 0.0, |
| 140 | + 'bottle': 0.0, |
| 141 | + 'bus': 0.0, |
| 142 | + 'car': 0.0, |
| 143 | + 'cat': 0.0, |
| 144 | + 'chair': 0.0, |
| 145 | + 'cow': 0.0, |
| 146 | + 'diningtable': 0.0, |
| 147 | + 'dog': 0.0, |
| 148 | + 'horse': 0.0, |
| 149 | + 'motorbike': 0.0, |
| 150 | + 'person': 0.0, |
| 151 | + 'pottedplant': 0.0, |
| 152 | + 'sheep': 0.0, |
| 153 | + 'sofa': 0.0, |
| 154 | + 'train': 0.0, |
| 155 | + 'tvmonitor': 0.0, |
| 156 | + 'mAP': [] |
| 157 | + } |
| 158 | + for cls_name in aps.keys(): |
| 159 | + det_path = os.path.join(args.detect_dir, '{}.txt') |
| 160 | + anno_path = os.path.join( |
| 161 | + args.data_dir, 'VOC{}'.format(args.data_year), 'Annotations', '{}.xml') |
| 162 | + if os.path.exists(det_path.format(cls_name)): |
| 163 | + recall, precision, ap = voc_eval( |
| 164 | + det_path, |
| 165 | + anno_path, |
| 166 | + cls_name, |
| 167 | + use_07_metric=args.use_07_metric) |
| 168 | + aps[cls_name] = ap |
| 169 | + aps['mAP'].append(ap) |
| 170 | + |
| 171 | + aps['mAP'] = np.mean(aps['mAP']) |
| 172 | + for key, value in aps.items(): |
| 173 | + print('{}: {}'.format(key, value)) |
0 commit comments