forked from openvinotoolkit/nncf
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
181 lines (148 loc) · 6.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright (c) 2025 Intel Corporation
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import subprocess
from pathlib import Path
from typing import Any, Dict, Tuple
import openvino as ov
import torch
from rich.progress import track
from ultralytics.cfg import get_cfg
from ultralytics.data.converter import coco80_to_coco91_class
from ultralytics.data.utils import check_det_dataset
from ultralytics.models.yolo import YOLO
from ultralytics.models.yolo.detect.val import DetectionValidator
from ultralytics.utils import DATASETS_DIR
from ultralytics.utils import DEFAULT_CFG
from ultralytics.utils.metrics import ConfusionMatrix
import nncf
MODEL_NAME = "yolov8n"
ROOT = Path(__file__).parent.resolve()
def validate(
model: ov.Model, data_loader: torch.utils.data.DataLoader, validator: DetectionValidator, num_samples: int = None
) -> Tuple[Dict, int, int]:
validator.seen = 0
validator.jdict = []
validator.stats = dict(tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[])
validator.confusion_matrix = ConfusionMatrix(nc=validator.nc)
model.reshape({0: [1, 3, -1, -1]})
compiled_model = ov.compile_model(model, device_name="CPU")
output_layer = compiled_model.output(0)
for batch_i, batch in enumerate(track(data_loader, description="Validating")):
if num_samples is not None and batch_i == num_samples:
break
batch = validator.preprocess(batch)
preds = torch.from_numpy(compiled_model(batch["img"])[output_layer])
preds = validator.postprocess(preds)
validator.update_metrics(preds, batch)
stats = validator.get_stats()
return stats, validator.seen, validator.nt_per_class.sum()
def print_statistics(stats: Dict[str, float], total_images: int, total_objects: int) -> None:
mp, mr, map50, mean_ap = (
stats["metrics/precision(B)"],
stats["metrics/recall(B)"],
stats["metrics/mAP50(B)"],
stats["metrics/mAP50-95(B)"],
)
s = ("%20s" + "%12s" * 6) % ("Class", "Images", "Labels", "Precision", "Recall", "mAP@.5", "mAP@.5:.95")
print(s)
pf = "%20s" + "%12i" * 2 + "%12.3g" * 4 # print format
print(pf % ("all", total_images, total_objects, mp, mr, map50, mean_ap))
def prepare_validation(model: YOLO, args: Any) -> Tuple[DetectionValidator, torch.utils.data.DataLoader]:
validator: DetectionValidator = model.task_map[model.task]["validator"](args=args)
validator.data = check_det_dataset(args.data)
validator.stride = 32
validator.is_coco = True
validator.class_map = coco80_to_coco91_class()
validator.names = model.model.names
validator.metrics.names = validator.names
validator.nc = model.model.model[-1].nc
coco_data_path = DATASETS_DIR / "coco128"
data_loader = validator.get_dataloader(coco_data_path.as_posix(), 1)
return validator, data_loader
def benchmark_performance(model_path: Path, config) -> float:
command = [
"benchmark_app",
"-m", model_path.as_posix(),
"-d", "CPU",
"-api", "async",
"-t", "30",
"-shape", str([1, 3, config.imgsz, config.imgsz]),
] # fmt: skip
cmd_output = subprocess.check_output(command, text=True) # nosec
match = re.search(r"Throughput\: (.+?) FPS", cmd_output)
return float(match.group(1))
def prepare_openvino_model(model: YOLO, model_name: str) -> Tuple[ov.Model, Path]:
ir_model_path = ROOT / f"{model_name}_openvino_model" / f"{model_name}.xml"
if not ir_model_path.exists():
onnx_model_path = ROOT / f"{model_name}.onnx"
if not onnx_model_path.exists():
model.export(format="onnx", dynamic=True, half=False)
ov.save_model(ov.convert_model(onnx_model_path), ir_model_path)
return ov.Core().read_model(ir_model_path), ir_model_path
def quantize(model: ov.Model, data_loader: torch.utils.data.DataLoader, validator: DetectionValidator) -> ov.Model:
def transform_fn(data_item: Dict):
"""
Quantization transform function. Extracts and preprocess input data from dataloader
item for quantization.
Parameters:
data_item: Dict with data item produced by DataLoader during iteration
Returns:
input_tensor: Input data for quantization
"""
input_tensor = validator.preprocess(data_item)["img"].numpy()
return input_tensor
quantization_dataset = nncf.Dataset(data_loader, transform_fn)
quantized_model = nncf.quantize(
model,
quantization_dataset,
subset_size=len(data_loader),
preset=nncf.QuantizationPreset.MIXED,
ignored_scope=nncf.IgnoredScope(
types=["Multiply", "Subtract", "Sigmoid"],
subgraphs=[
nncf.Subgraph(
inputs=["/model.22/Concat", "/model.22/Concat_1", "/model.22/Concat_2"],
outputs=["output0/sink_port_0"],
)
],
),
)
return quantized_model
def main():
model = YOLO(ROOT / f"{MODEL_NAME}.pt")
args = get_cfg(cfg=DEFAULT_CFG)
args.data = "coco128.yaml"
# Prepare validation dataset and helper
validator, data_loader = prepare_validation(model, args)
# Convert to OpenVINO model
ov_model, ov_model_path = prepare_openvino_model(model, MODEL_NAME)
# Quantize mode in OpenVINO representation
quantized_model = quantize(ov_model, data_loader, validator)
quantized_model_path = ov_model_path.with_name(ov_model_path.stem + "_quantized" + ov_model_path.suffix)
ov.save_model(quantized_model, str(quantized_model_path))
# Validate FP32 model
fp_stats, total_images, total_objects = validate(ov_model, data_loader, validator)
print("Floating-point model validation results:")
print_statistics(fp_stats, total_images, total_objects)
# Validate quantized model
q_stats, total_images, total_objects = validate(quantized_model, data_loader, validator)
print("Quantized model validation results:")
print_statistics(q_stats, total_images, total_objects)
# Benchmark performance of FP32 model
fp_model_perf = benchmark_performance(ov_model_path, args)
print(f"Floating-point model performance: {fp_model_perf} FPS")
# Benchmark performance of quantized model
quantized_model_perf = benchmark_performance(quantized_model_path, args)
print(f"Quantized model performance: {quantized_model_perf} FPS")
return fp_stats["metrics/mAP50-95(B)"], q_stats["metrics/mAP50-95(B)"], fp_model_perf, quantized_model_perf
if __name__ == "__main__":
main()