This document is used to list steps of reproducing Intel Optimized TensorFlow OOB models tuning zoo result.
Recommend python 3.6 or higher version.
# Install Intel® Neural Compressor
pip install neural-compressor
pip install intel-tensorflow
Note: Supported Tensorflow Version.
We use dummy data to do benchmarking with Tensorflow OOB models.
- Get model from open_model_zoo
git clone https://github.com/openvinotoolkit/open_model_zoo.git
cd open_model_zoo/tools/downloader/
./downloader.py --name ${model_name} --output_dir ${model_path}
List models names can get with open_model_zoo:
Model_name |
---|
deeplabv3 |
efficientnet-b0 |
efficientnet-b0_auto_aug |
efficientnet-b5 |
efficientnet-b7_auto_aug |
faster_rcnn_inception_v2_coco |
faster_rcnn_resnet101_coco |
faster_rcnn_resnet50_coco |
googlenet-v1-tf |
googlenet-v3 |
googlenet-v4-tf |
i3d-rgb-tf |
inception-resnet-v2-tf |
license-plate-recognition-barrier-0007 |
resnet-50-tf |
rfcn-resnet101-coco-tf |
vehicle-license-plate-detection-barrier-0123 |
yolo-v2-tf |
yolo-v3-tf |
- Download with URL
Model name | URL |
---|---|
faster_rcnn_resnet101_ava_v2.1 | http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_ava_v2.1_2018_04_30.tar.gz |
faster_rcnn_resnet101_kitti | http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_kitti_2018_01_28.tar.gz |
faster_rcnn_resnet101_lowproposals_coco | http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_lowproposals_coco_2018_01_28.tar.gz |
image-retrieval-0001 | https://download.01.org/opencv/openvino_training_extensions/models/image_retrieval/image-retrieval-0001.tar.gz |
SSD ResNet50 V1 FPN 640x640 (RetinaNet50) | http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8.tar.gz |
ssd_inception_v2_coco | http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2018_01_28.tar.gz |
ssd-resnet34 300x300 | https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/ssd_resnet34_fp32_bs1_pretrained_model.pb |
./run_tuning.sh --topology=${model_topology} --dataset_location= --input_model=${model_path} --output_model=${output_model_path}
./run_benchmark.sh --topology=${model_topology} --dataset_location= --input_model=${model_path} --mode=benchmark --batch_size=1 --iters=200