forked from intel/neural-compressor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
60 lines (53 loc) · 2.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
from __future__ import division
import time
import numpy as np
import tensorflow as tf
from argparse import ArgumentParser
tf.compat.v1.disable_eager_execution()
class eval_object_detection_optimized_graph(object):
def __init__(self):
arg_parser = ArgumentParser(description='Parse args')
arg_parser.add_argument('-g',
"--input-graph",
help='Specify the input graph.',
dest='input_graph')
arg_parser.add_argument('--config', type=str, default='')
arg_parser.add_argument('--output_model', type=str, default='')
arg_parser.add_argument('--mode', type=str, default='performance')
arg_parser.add_argument('--tune', action='store_true', default=False)
arg_parser.add_argument('--benchmark', dest='benchmark',
action='store_true', help='run benchmark')
self.args = arg_parser.parse_args()
def run(self):
if self.args.tune:
from neural_compressor.experimental import Quantization
quantizer = Quantization(self.args.config)
quantizer.model = self.args.input_graph
q_model = quantizer()
q_model.save(self.args.output_model)
if self.args.benchmark:
from neural_compressor.experimental import Benchmark
evaluator = Benchmark(self.args.config)
evaluator.model = self.args.input_graph
evaluator(self.args.mode)
if __name__ == "__main__":
evaluate_opt_graph = eval_object_detection_optimized_graph()
evaluate_opt_graph.run()