forked from intel/neural-compressor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
70 lines (54 loc) · 2.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#
# -*- coding: utf-8 -*-
#
# Copyright (c) 2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import time
import numpy as np
from argparse import ArgumentParser
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
tf.compat.v1.disable_eager_execution()
class eval_classifier_optimized_graph:
"""Evaluate image classifier with optimized TensorFlow graph"""
def __init__(self):
arg_parser = ArgumentParser(description='Parse args')
arg_parser.add_argument('-g', "--input-graph",
help='Specify the input graph for the transform tool',
dest='input_graph')
arg_parser.add_argument("--output-graph",
help='Specify tune result model save dir',
dest='output_graph')
arg_parser.add_argument("--config", default=None, help="tuning config")
arg_parser.add_argument('--benchmark', dest='benchmark', action='store_true', help='run benchmark')
arg_parser.add_argument('--mode', dest='mode', default='performance', help='benchmark mode')
arg_parser.add_argument('--tune', dest='tune', action='store_true', help='use neural_compressor to tune.')
self.args = arg_parser.parse_args()
def run(self):
""" This is neural_compressor function include tuning and benchmark option """
if self.args.tune:
from neural_compressor.experimental import Quantization, common
quantizer = Quantization(self.args.config)
quantizer.model = common.Model(self.args.input_graph)
q_model = quantizer()
q_model.save(self.args.output_graph)
if self.args.benchmark:
from neural_compressor.experimental import Benchmark, common
evaluator = Benchmark(self.args.config)
evaluator.model = common.Model(self.args.input_graph)
evaluator(self.args.mode)
if __name__ == "__main__":
evaluate_opt_graph = eval_classifier_optimized_graph()
evaluate_opt_graph.run()